cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A181734 G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x)^3).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 227, 832, 3126, 11980, 46646, 184003, 733783, 2953434, 11982265, 48949631, 201182110, 831292029, 3451336467, 14390479996, 60232976244, 252992172572, 1066000599632, 4504710385216, 19086728370308, 81069926894797
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 227*x^6 +...
The logarithm of the g.f. may be expressed as the series:
log(A(x)) = (1 + x*A(x)^2)*x +
(1 + 4*x*A(x)^2 + x^2*A(x)^4)*x^2/2 +
(1 + 9*x*A(x)^2 + 9*x^2*A(x)^4 + x^3*A(x)^6)*x^3/3 +
(1 + 16*x*A(x)^2 + 36*x^2*A(x)^4 + 16*x^3*A(x)^6 + x^4*A(x)^8)*x^4/4 +...
which involves the squared binomial coefficients.
		

Crossrefs

Cf. A036765.

Programs

  • Mathematica
    Table[Sum[Binomial[n+k,k]*Binomial[n+k+1, n-2k]/(n+1),{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=sum(k=0, n\2, binomial(n+k, k)*binomial(n+k+1, n-2*k))/(n+1)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=(1+x*A)*(1+x^2*A^3));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x*A^2+x*O(x^n))^j)*x^m/m)));polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x*A^2+x*O(x^n))^j)*(1-x*A^2)^(2*m+1)*x^m/m)));polcoeff(A, n, x)}

Formula

a(n) = Sum_{k=0..[n/2]} C(n+k, k)*C(n+k+1, n-2k)/(n+1).
G.f.: A(x) = (1/x)*Series_Reversion( x/(1+x) - x^3 ).
G.f. satisfies:
(1) A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1 + x)/(1 - x^2 - x^3).
(2) A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*x^k*A(x)^(2k)] * x^n/n ).
(3) A(x) = exp( Sum_{n>=1} [Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^(2k)]*(1-x*A(x)^2)^(2*n+1)* x^n/n ).
Recurrence: 23*(n-1)*n*(n+1)*(429*n^2 - 1903*n + 2004)*a(n) = 3*(n-1)*n*(12870*n^3 - 63525*n^2 + 87653*n - 28312)*a(n-1) + 3*(n-1)*(3861*n^4 - 24849*n^3 + 59286*n^2 - 61456*n + 22956)*a(n-2) + 3*(23166*n^5 - 207009*n^4 + 712578*n^3 - 1173947*n^2 + 916800*n - 266772)*a(n-3) - 3*(n-3)*(3*n - 10)*(3*n - 5)*(429*n^2 - 1045*n + 530)*a(n-4). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 1/46*(45 + 36*sqrt(3) + 23*sqrt(3429/529 + (3792*sqrt(3))/529)) = 4.50735893936524052... is the root of the equation 27 - 162*d - 27*d^2 - 90*d^3 + 23*d^4 = 0 and c = 1/(2*sqrt(-29 - 17*sqrt(3) + 5*sqrt(69 + 40*sqrt(3)))) = 0.842957337580479516110291505734... - Vaclav Kotesovec, Sep 18 2013, updated Mar 18 2024

Extensions

Name changed slightly by Paul D. Hanna, Nov 14 2012

A215576 G.f. satisfies A(x) = (1 + x^2)*(1 + x*A(x)^2).

Original entry on oeis.org

1, 1, 3, 8, 24, 80, 278, 997, 3670, 13782, 52588, 203314, 794726, 3135540, 12470444, 49942305, 201233170, 815205699, 3318291966, 13565162636, 55669063762, 229257178198, 947142023262, 3924380904498, 16303716754884, 67899954924360, 283425070356740, 1185551594834910
Offset: 0

Views

Author

Paul D. Hanna, Aug 16 2012

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ),
then F(x) = (1 + x^r*F(x)^(p+1))*(1 + x^(r+s)*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 24*x^4 + 80*x^5 + 278*x^6 + 997*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 22*x^3 + 73*x^4 + 256*x^5 + 924*x^6 + 3414*x^7 +...
where A(x) = 1+x^2 + x*(1+x^2)*A(x)^2.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x/A^2)*A*x + (1 + 2^2*x/A^2 + x^2/A^4)*A^2*x^2/2 +
 (1 + 3^2*x/A^2 + 3^2*x^2/A^4 + x^3/A^6)*A^3*x^3/3 +
 (1 + 4^2*x/A^2 + 6^2*x^2/A^4 + 4^2*x^3/A^6 + x^4/A^8)*A^4*x^4/4 +
 (1 + 5^2*x/A^2 + 10^2*x^2/A^4 + 10^2*x^3/A^6 + 5^2*x^4/A^8 + x^5/A^10)*A^5*x^5/5 +
 (1 + 6^2*x/A^2 + 15^2*x^2/A^4 + 20^2*x^3/A^6 + 15^2*x^4/A^8 + 6^2*x^5/A^10 + x^6/A^12)*A^6*x^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 16*x^3/3 + 57*x^4/4 + 231*x^5/5 + 938*x^6/6 + 3830*x^7/7 + 15833*x^8/8 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20;aa=ConstantArray[0,nmax]; aa[[1]]=1;Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x^2)*(1+x*AGF^2)-AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 19 2013 *)
    CoefficientList[Series[(1 - Sqrt[1 - 4*x*(1 + x^2)^2]) / (2*x*(1 + x^2)), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 11 2018 *)
    Table[Sum[Binomial[2*n - 4*i + 1, i] * Binomial[2*n - 4*i + 1, n - 2*i]/(2*n - 4*i + 1), {i, 0, Floor[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 11 2018, after Vladimir Kruchinin *)
  • PARI
    {a(n)=polcoeff((1 - sqrt(1 - 4*x*(1+x^2 +x*O(x^n))^2)) / (2*x*(1+x^2 +x*O(x^n))),n)}
    for(n=0,31,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1+x*A^2)*(1+x^2)+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j/A^(2*j))*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x/A^2)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j/A^(2*j))*x^m*A^m/m))); polcoeff(A, n, x)}

Formula

G.f. satisfies:
(1) A(x) = (1 - sqrt(1 - 4*x*(1+x^2)^2)) / (2*x*(1+x^2)).
(2) A(x) = exp( Sum_{n>=1} (x^n/n) * A(x)^n * (Sum_{k=0..n} C(n,k)^2 * x^k / A(x)^(2*k)) ).
(3) A(x) = exp( Sum_{n>=1} (1-x/A(x)^2)^(2*n+1) * (Sum_{k>=0} C(n+k,k)^2*x^k/A(x)^(2*k)) * x^n*A(x)^n/n ).
(4) A(x) = x / Series_Reversion( x*G(x) ) where G(x) is the g.f. of A200717.
(5) A(x) = G(x/A(x)) where G(x) = A(x*G(x)) is the g.f. of A200717.
Recurrence: (n+1)*a(n) = 2*(2*n-1)*a(n-1) - (n+1)*a(n-2) + 6*(2*n-5)*a(n-3) + 6*(2*n-9)*a(n-5) + 2*(2*n-13)*a(n-7). - Vaclav Kotesovec, Aug 19 2013
a(n) ~ c*d^n/n^(3/2), where d = 4.41997678... is the root of the equation -4-8*d^2-4*d^4+d^5=0 and c = sqrt(d*(8 + 16*d^2 + 8*d^4 + 3*d^5 + d^7) / (Pi*(1 + d^2)^3))/4 = 0.648259186485429075561822659694489853... - Vaclav Kotesovec, Aug 19 2013, updated Oct 11 2018
a(n) = Sum_{i=0..floor(n/2)} C(2*n-4*i+1,i)*C(2*n-4*i+1,n-2*i)/(2*n-4*i+1). - Vladimir Kruchinin, Oct 11 2018

A200717 G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^2).

Original entry on oeis.org

1, 1, 4, 18, 93, 521, 3073, 18806, 118297, 760162, 4968480, 32928392, 220766739, 1494635330, 10203884795, 70167751762, 485574854049, 3379064343829, 23631314301088, 165998001901786, 1170706810318259, 8286253163771045, 58842370488310336, 419102145275264242, 2993221125640617827
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ), then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 93*x^4 + 521*x^5 + 3073*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 238*x^4 + 1372*x^5 + 8256*x^6 +...
A(x)^3 = 1 + 3*x + 15*x^2 + 79*x^3 + 447*x^4 + 2655*x^5 + 16324*x^6 +...
A(x)^5 = 1 + 5*x + 30*x^2 + 180*x^3 + 1110*x^4 + 7006*x^5 + 45075*x^6 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^2 + x^3*A(x)^5.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x/A)*x*A^2 + (1 + 2^2*x/A + x^2/A^2)*x^2*A^4/2 +
(1 + 3^2*x/A + 3^2*x^2/A^2 + x^3/A^3)*x^3*A^6/3 +
(1 + 4^2*x/A + 6^2*x^2/A^2 + 4^2*x^3/A^3 + x^4/A^4)*x^4*A^8/4 +
(1 + 5^2*x/A + 10^2*x^2/A^2 + 10^2*x^3/A^3 + 5^2*x^4/A^4 + x^5/A^5)*x^5*A^10/5 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF^3) * (1 + x^2*AGF^2) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • PARI
    {a(n)=polcoeff((1/x)*serreverse( x*(1 + sqrt(1 - 4*x*(1+x^2)^2 +x*O(x^n))) / (2*(1+x^2)) ),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(p=2,q=-1,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=2,q=-1,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=2,q=-1,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion( x*(1 + sqrt(1 - 4*x*(1+x^2)^2)) / (2*(1+x^2)) ).
(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [Sum_{k=0..n} C(n,k)^2 * x^k / A(x)^k] ).
(3) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [(1-x/A(x)^2)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k / A(x)^k] ).
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 7.60435909657327146... is the root of the equation -108 + 27*d^2 + 1620*d^3 - 216*d^4 - 1456*d^5 - 2556*d^6 - 716*d^7 + 20*d^8 + 16*d^9 = 0 and c = 0.45780648099092640511434469483084555191269495951... - Vaclav Kotesovec, Sep 19 2013

A215623 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^4).

Original entry on oeis.org

1, 2, 11, 89, 836, 8551, 92445, 1039030, 12019135, 142151324, 1711116646, 20894534324, 258195565959, 3222677162409, 40569811695707, 514520507077695, 6567611974106756, 84310605465652750, 1087798325715407703, 14098475168420865396, 183465816241394787196
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.0712256396327314729661274986100... with A(r) = 1.4248895273944523042559975726479124492235978714420... where y=A(r) satisfies 3*y^7 - 4*y^6 + 16*y^5 - 28*y^4 + 8*y^3 - 4 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + 8551*x^5 + 92445*x^6 + ...
Related expansions.
A(x)^4 = 1 + 8*x + 68*x^2 + 652*x^3 + 6750*x^4 + 73544*x^5 + 831078*x^6 + ...
A(x)^5 = 1 + 10*x + 95*x^2 + 965*x^3 + 10350*x^4 + 115507*x^5 + ...
where A(x) = 1 + x*(A(x) + A(x)^4) + x^2*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^3)*x + (1 + 2^2*A(x)^3 + A(x)^6)*x^2/2 +
  (1 + 3^2*A(x)^3 + 3^2*A(x)^6 + A(x)^9)*x^3/3 +
  (1 + 4^2*A(x)^3 + 6^2*A(x)^6 + 4^2*A(x)^9 + A(x)^12)*x^4/4 +
  (1 + 5^2*A(x)^3 + 10^2*A(x)^6 + 10^2*A(x)^9 + 5^2*A(x)^12 + A(x)^15)*x^5/5 + ...
more explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 209*x^3/3 + 2550*x^4/4 + 32082*x^5/5 + 411705*x^6/6 + 5356416*x^7/7 + ....
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(3*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^4)+x*O(x^n)); polcoeff(A, n)}
    for(n=0,21,print1(a(n),", "))

Formula

G.f. satisfies A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(3*k)).
The formal inverse of g.f. A(x) is (sqrt((1-x^3)^2 + 4*x^4) - (1+x^3))/(2*x^4).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(n+3*k+1,n-k) / (n+3*k+1). - Seiichi Manyama, Jul 19 2023
From Peter Bala, Sep 10 2024: (Start)
x/series_reversion(x*A(x)) = 1 + 2*x + 7*x^2 + 39*x^3 + 242*x^4 + 1634*x^5 + ..., the g.f. of A364336.
(1/x) * series_reversion(x/A(x)) = 1 + 2*x + 15*x^2 + 163*x^3 + 2070*x^4 + 28698*x^5 + ..., the g.f. of A364331. (End)

A215624 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^5).

Original entry on oeis.org

1, 2, 13, 130, 1518, 19358, 261323, 3670828, 53100530, 785657529, 11834135909, 180863294507, 2797643204500, 43715591710804, 689030031494554, 10941710269299893, 174889301792724294, 2811464199460768704, 45426696813655278251
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.05685644444171304880925020950930... with A(r) = 1.3208055627586104770123863310077013110788003146438630... where y=A(r) satisfies 4*y^9 - 5*y^8 + 25*y^6 - 40*y^5 + 10*y^4 - 5 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 13*x^2 + 130*x^3 + 1518*x^4 + 19358*x^5 +...
Related expansions.
A(x)^5 = 1 + 10*x + 105*x^2 + 1250*x^3 + 16120*x^4 + 219162*x^5 +...
A(x)^6 = 1 + 12*x + 138*x^2 + 1720*x^3 + 22803*x^4 + 315840*x^5 +...
where A(x) = 1 + x*(A(x) + A(x)^5) + x^2*A(x)^6.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^4)*x + (1 + 2^2*A(x)^4 + A(x)^8)*x^2/2 +
  (1 + 3^2*A(x)^4 + 3^2*A(x)^8 + A(x)^12)*x^3/3 +
  (1 + 4^2*A(x)^4 + 6^2*A(x)^8 + 4^2*A(x)^12 + A(x)^16)*x^4/4 +
  (1 + 5^2*A(x)^4 + 10^2*A(x)^8 + 10^2*A(x)^12 + 5^2*A(x)^16 + A(x)^20)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 22*x^2/2 + 320*x^3/3 + 4886*x^4/4 + 76962*x^5/5 + 1236784*x^6/6 + 20152260*x^7/7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(4*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^5)+x*O(x^n)); polcoeff(A, n)}
    for(n=0,21,print1(a(n),", "))

Formula

G.f. satisfies A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(4*k)).
The formal inverse of g.f. A(x) is (sqrt((1-x^4)^2 + 4*x^5) - (1+x^4))/(2*x^5).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(n+4*k+1,n-k) / (n+4*k+1). - Seiichi Manyama, Jul 19 2023

A200716 G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)).

Original entry on oeis.org

1, 1, 4, 17, 84, 453, 2574, 15185, 92119, 571022, 3600981, 23029021, 149000790, 973581692, 6415198045, 42580369370, 284427460919, 1910594331920, 12898153658337, 87461992473577, 595455441375978, 4068652368270955, 27891991988552554, 191783482751813061, 1322319472577803761
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 17*x^3 + 84*x^4 + 453*x^5 + 2574*x^6 +...
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 76*x^3 + 414*x^4 + 2370*x^5 + 14047*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 120*x^3 + 685*x^4 + 4048*x^5 + 24558*x^6 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x) + x^3*A(x)^4.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x/A^2)*x*A^2 + (1 + 2^2*x/A^2 + x^2/A^4)*x^2*A^4/2 +
(1 + 3^2*x/A^2 + 3^2*x^2/A^4 + x^3/A^6)*x^3*A^6/3 +
(1 + 4^2*x/A^2 + 6^2*x^2/A^4 + 4^2*x^3/A^6 + x^4/A^8)*x^4*A^8/4 +
(1 + 5^2*x/A^2 + 10^2*x^2/A^4 + 10^2*x^3/A^6 + 5^2*x^4/A^8 + x^5/A^10)*x^5*A^10/5 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF^3) * (1 + x^2*AGF) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • PARI
    {a(n)=local(p=2,q=-2,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=2,q=-2,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=2,q=-2,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [Sum_{k=0..n} C(n,k)^2 * x^k / A(x)^(2*k)] ).
(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [(1-x/A(x)^2)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2 * x^k/A(x)^(2*k)] ).
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 7.342019160707096169... is the root of the equation -27 + 108*d^2 - 162*d^4 + 54*d^5 + 108*d^6 + 216*d^7 - 27*d^8 - 18*d^9 - 27*d^10 + 4*d^11 = 0 and c = 0.468554406193087607276981923311829947714908080994... - Vaclav Kotesovec, Sep 19 2013

A200731 G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^6).

Original entry on oeis.org

1, 1, 4, 22, 139, 953, 6894, 51796, 400269, 3161262, 25403536, 207043048, 1707345547, 14219399626, 119431172630, 1010495472960, 8604568715969, 73683710894255, 634142349130800, 5482062214763436, 47582484748270453, 414503778412715065, 3622792181209018168, 31758958747482608912
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2, q=3.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 139*x^4 + 953*x^5 + 6894*x^6 +...
where A(x) = (1 + x*A(x)^3)*(1 + x^2*A(x)^6).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 609*x^4 + 4335*x^5 + 32197*x^6 +...
A(x)^6 = 1 + 6*x + 39*x^2 + 272*x^3 + 1989*x^4 + 15054*x^5 + 116955*x^6 +...
A(x)^9 = 1 + 9*x + 72*x^2 + 570*x^3 + 4545*x^4 + 36639*x^5 + 298662*x^6 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^6 + x^3*A(x)^9.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^3)*x*A^2 + (1 + 2^2*x*A^3 + x^2*A^6)*x^2*A^4/2 +
(1 + 3^2*x*A^3 + 3^2*x^2*A^6 + x^3*A^9)*x^3*A^6/3 +
(1 + 4^2*x*A^3 + 6^2*x^2*A^6 + 4^2*x^3*A^9 + x^4*A^12)*x^4*A^8/4 +
(1 + 5^2*x*A^3 + 10^2*x^2*A^6 + 10^2*x^3*A^9 + 5^2*x^4*A^12 + x^5*A^15)*x^5*A^10/5 + ...
which involves squares of binomial coefficients.
		

Crossrefs

Programs

  • Mathematica
    nmax = 23; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x A[x]^3)*(1 + x^2 A[x]^6) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=polcoeff( ((1/x)*serreverse(x/(1 + x + x^2 + x^3 +x*O(x^n))^3))^(1/3), n)}
    
  • PARI
    {a(n)=polcoeff( (1 + x + x^2 + x^3 +x*O(x^n))^(3*n+1)/(3*n+1), n)}
    
  • PARI
    {a(n)=local(p=2,q=3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=2,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=2,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) a(n) = [x^n] (1 + x + x^2 + x^3)^(3*n+1) / (3*n+1).
(2) A(x) = ( (1/x)*Series_Reversion( x/(1 + x + x^2 + x^3)^3 ) )^(1/3).
(3) A( x/(1 + x + x^2 + x^3)^3 ) = 1 + x + x^2 + x^3.
(4) A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) = g.f. of A036765 (number of rooted trees with a degree constraint).
(5) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * [Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(3*k)] ).
(6) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * [(1-x*A(x)^2)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^(3*k) )] ).
From Peter Bala, Jun 21 2015: (Start)
a(n) = 1/(3*n + 1)*Sum_{k = 0..floor(n/2)} binomial(3*n + 1,k)*binomial(3*n + 1,n - 2*k).
More generally, the coefficient of x^n in A(x)^r equals r/(3*n + r)*Sum_{k = 0..floor(n/2)} binomial(3*n + r,k)*binomial(3*n + r,n - 2*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} 1/3*b(n)x^n/n), where b(n) = Sum_{k = 0..floor(n/2)} binomial(3*n,k)*binomial(3*n,n - 2*k). Cf. A036765, A186241, A198951. (End)
Recurrence: 128*n*(2*n - 1)*(4*n - 1)*(4*n + 1)*(8*n - 3)*(8*n - 1)*(8*n + 1)*(8*n + 3)*(511073753*n^7 - 4871850365*n^6 + 19478089219*n^5 - 42349790393*n^4 + 54094962928*n^3 - 40605677522*n^2 + 16589611340*n - 2846611200)*a(n) = 3*(3*n - 2)*(3*n - 1)*(3047149994898003*n^13 - 32094344705469618*n^12 + 145743661212727337*n^11 - 373710048777443810*n^10 + 593788894662012231*n^9 - 600683242386376410*n^8 + 377600776651518819*n^7 - 130595257353511374*n^6 + 11334217618972546*n^5 + 8004135084547148*n^4 - 2618300200112616*n^3 + 152383960257264*n^2 + 33025238671680*n - 3264156403200)*a(n-1) - 576*(n-1)*(3*n - 5)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(495741540410*n^10 - 3982082543435*n^9 + 12891395244590*n^8 - 21360691645174*n^7 + 18695904340190*n^6 - 7495052530111*n^5 + 212344193250*n^4 + 656210670544*n^3 - 106487698440*n^2 - 7969373424*n + 1477828800)*a(n-2) + 110592*(n-2)*(n-1)*(3*n - 8)*(3*n - 7)*(3*n - 5)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(511073753*n^7 - 1294334094*n^6 + 979535842*n^5 - 149518418*n^4 - 72732399*n^3 + 16154432*n^2 + 843684*n - 192240)*a(n-3). - Vaclav Kotesovec, Nov 17 2017
a(n) ~ s/(2*sqrt(3*Pi*(4 - 9*r*s^2*(1 + r*s^3)))*n^(3/2)*r^n), where r = 0.1068159753611743655799981945670627355827110854720... and s = 1.345561337338583233012136458010090420775336284226... are real roots of the system of equations (1 + r*s^3)*(1 + r^2*s^6) = s, 3*r*s^2*(1 + 2*r*s^3 + 3*r^2*s^6) = 1. - Vaclav Kotesovec, Nov 22 2017

A203717 A Catalan triangle by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 4, 1, 1, 20, 15, 5, 1, 1, 50, 53, 21, 6, 1, 1, 126, 182, 84, 28, 7, 1, 1, 322, 616, 326, 120, 36, 8, 1, 1, 834, 2070, 1242, 495, 165, 45, 9, 1, 1, 2187, 6930, 4680, 1997, 715, 220, 55, 10, 1, 1, 5797, 23166, 17512, 7942, 3003, 1001, 286, 66, 11, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 04 2012

Keywords

Comments

Row sums = the Catalan sequence starting with offset 1: (1, 2, 5, 14, 42,...).
T(n,k) is the number of Dyck n-paths whose maximum ascent length is k. - David Scambler, Aug 22 2012
T(n,k) is the number of ordered rooted trees with n non-root nodes and maximal outdegree k. T(4,3) = 4:
. o o o o
. | /|\ /|\ /|\
. o o o o o o o o o o
. /|\ | | |
. o o o o o o - Alois P. Heinz, Jun 29 2014
T(n,k) also is the number of permutations p of [n] such that in 0p the largest up-jump equals k and no down-jump is larger than 1. An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here. T(4,3) = 4: 1432, 3214, 3241, 3421. - Alois P. Heinz, Aug 29 2017

Examples

			First few rows of the array begin:
1,...1,...1,...1,...1,...;
1,...2,...4,...9,..21,...; = A001006
1,...2,...5,..13,..36,...; = A036765
1,...2,...5,..14,..41,...; = A036766
1,...2,...5,..14,..42,...; = A036767
... Taking finite differences of array terms starting from the top by columns, we obtain row terms of the triangle. First few rows of the triangle are:
  1;
  1,    1;
  1,    3,    1;
  1,    8,    4,    1;
  1,   20,   15,    5,    1;
  1,   50,   53,   21,    6,   1;
  1,  126,  182,   84,   28,   7,   1;
  1,  322,  616,  326,  120,  36,   8,  1;
  1,  834, 2070, 1242,  495, 165,  45,  9,  1;
  1, 2187, 6930, 4680, 1997, 715, 220, 55, 10, 1;
  ...
Example: Row 4 of the triangle = (1, 8, 4, 1) = the finite differences of (1, 9, 13, 14), column 4 of the array. Term (3,4) = 13 of the array is the upper left term of M^4, where M is an infinite square production matrix with four diagonals of 1's starting at (1,2), (1,1), (2,1), and (3,1); with the rest zeros.
		

Crossrefs

Columns k=1-3 give: A057427, A140662(n-1) for n>1, A303271.
T(2n,n) gives A291662.
T(2n+1,n+1) gives A005809.
T(n,ceiling(n/2)) gives A303259.

Programs

  • Maple
    b:= proc(n, t, k) option remember; `if`(n=0, 1, `if`(t>0,
          add(b(j-1, k$2)*b(n-j, t-1, k), j=1..n), b(n-1, k$2)))
        end:
    T:= (n, k)-> b(n, k-1$2) -`if`(k=1, 0, b(n, k-2$2)):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Jun 29 2014
    # second Maple program:
    b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, k), j=1..min(1, u))+
          add(b(u+j-1, o-j, k), j=1..min(k, o)))
        end:
    T:= (n, k)-> b(0, n, k)-`if`(k=0, 0, b(0, n, k-1)):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    b[n_, t_, k_] := b[n, t, k] = If[n == 0, 1, If[t > 0, Sum[b[j-1, k, k]*b[n - j, t-1, k], {j, 1, n}], b[n-1, k, k]]]; T[n_, k_] := b[n, k-1, k-1] - If[k == 1, 0, b[n, k-2, k-2]]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(1, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)])
    def T(n, k): return b(0, n, k) - (0 if k==0 else b(0, n, k - 1))
    for n in range(1, 16): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Aug 30 2017

Formula

Finite differences of antidiagonals of an array in which n-th array row is generated from powers of M, extracting successive upper left terms. M for n-th row of the array is an infinite square production matrix composed of (n+1) diagonals of 1's and the rest zeros. Given the upper left term of the array is (1,1), the diagonals begin at (1,2), (1,1), (2,1), (3,1), (4,1),...
T(n,k) = A288942(n,k) - A288942(n,k-1). - Alois P. Heinz, Sep 01 2017

A219977 Expansion of 1/(1+x+x^2+x^3).

Original entry on oeis.org

1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0
Offset: 0

Views

Author

Harvey P. Dale, Dec 02 2012

Keywords

Examples

			G.f. = 1 - x + x^4 - x^5 + x^8 - x^9 + x^12 - x^13 + x^16 - x^17 + x^20 - x^21 + ...
		

Crossrefs

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1+x+x^2+x^3))); // Vincenzo Librandi, Apr 22 2015
  • Mathematica
    CoefficientList[Series[1/(1+x+x^2+x^3),{x,0,80}],x] (* or *) PadRight[{},120,{1,-1,0,0}]
    LinearRecurrence[{-1,-1,-1},{1,-1,0},80] (* Harvey P. Dale, May 22 2021 *)
  • PARI
    {a(n) = [1, -1, 0, 0][n%4 + 1]} /* Michael Somos, Dec 12 2012 */
    
  • PARI
    Vec(1/(1+x+x^2+x^3) + O(x^100)) \\ Michel Marcus, Jan 28 2016
    

Formula

G.f.: 1/(1 +x +x^2 +x^3).
Euler transform of length 4 sequence [ -1, 0, 0, 1]. - Michael Somos, Dec 12 2012
a(n) = a(n+4) = -a(1-n). |a(n)| = A133872(n). REVERT transform is A036765. INVERT transform is A077962. - Michael Somos, Dec 12 2012
A038505(n+2) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Dec 12 2012
From Wesley Ivan Hurt, Apr 22 2015: (Start)
a(n) +a(n-1) +a(n-2) +a(n-3) = 0.
a(n) = (-1)^n/2 +(-1)^(n/2 +1/4 -(-1)^n/4)/2. (End)

A200725 G.f. A(x) satisfies A(x) = (1+x^2)*(1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 4, 16, 76, 399, 2206, 12664, 74790, 451420, 2772313, 17267652, 108821293, 692609446, 4445642625, 28744599748, 187047449289, 1224027357216, 8050074481917, 53179900898596, 352726704965748, 2348036826102013, 15682048658695168, 105052549830928908, 705678173069959645
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2, q=-3.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 76*x^4 + 399*x^5 + 2206*x^6 +...
Related expansion:
A(x)^3 = 1 + 3*x + 15*x^2 + 73*x^3 + 384*x^4 + 2133*x^5 + 12280*x^6 +...
where a(3) = 1 + 15; a(4) = 3 + 73; a(5) = 15 + 384; a(6) = 73 + 2133; ...
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x/A^3)*x*A^2 + (1 + 2^2*x/A^3 + x^2/A^6)*x^2*A^4/2 +
(1 + 3^2*x/A^3 + 3^2*x^2/A^6 + x^3/A^9)*x^3*A^6/3 +
(1 + 4^2*x/A^3 + 6^2*x^2/A^6 + 4^2*x^3/A^9 + x^4/A^12)*x^4*A^8/4 +
(1 + 5^2*x/A^3 + 10^2*x^2/A^6 + 10^2*x^3/A^9 + 5^2*x^4/A^12 + x^5/A^15)*x^5*A^10/5 + ...
which involves the squares of the binomial coefficients C(n,k).
		

Crossrefs

Programs

  • Mathematica
    nmax=20;aa=ConstantArray[0,nmax]; aa[[1]]=1;Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x^2)*(1+x*AGF^3)-AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 19 2013 *)
  • PARI
    {a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * (Sum_{k=0..n} C(n,k)^2 * x^k / A(x)^(3*k)) ).
(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * (1 - x/A(x)^3)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k / A(x)^(3*k) ).
Recurrence: 2*(n-4)*(n-2)*n*(2*n+1)*a(n) = 3*(n-4)*(n-2)*(3*n-2)*(3*n-1)*a(n-1) - 2*(n-4)*(n-2)*n*(2*n-1)*a(n-2) + 6*(n-4)*(3*n-8)*(6*n^2 - 17*n + 2)*a(n-3) + 6*(3*n-14)*(9*n^3 - 66*n^2 + 114*n - 4)*a(n-5) + 6*n*(3*n-20)*(6*n^2 - 47*n + 78)*a(n-7) + 3*(n-2)*n*(3*n-26)*(3*n-19)*a(n-9). - Vaclav Kotesovec, Aug 19 2013
a(n) ~ c*d^n/n^(3/2), where d = 7.1535029565... is the root of the equation -27 - 81*d^2 - 81*d^4 - 27*d^6 + 4*d^7 = 0 and c = 0.26300783791885411389369671... - Vaclav Kotesovec, Aug 19 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-6*k+1,k) * binomial(3*n-6*k+1,n-2*k)/(3*n-6*k+1). - Seiichi Manyama, Dec 17 2024
Previous Showing 21-30 of 48 results. Next