cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 91 results. Next

A037152 Smallest prime > n!+1.

Original entry on oeis.org

3, 5, 11, 29, 127, 727, 5051, 40343, 362897, 3628811, 39916817, 479001629, 6227020867, 87178291219, 1307674368043, 20922789888023, 355687428096031, 6402373705728037, 121645100408832089, 2432902008176640029
Offset: 1

Views

Author

Keywords

Comments

Main entry for this sequence is A037153.

Crossrefs

Programs

  • Mathematica
    NextPrime[Range[20]!+1] (* Harvey P. Dale, Apr 08 2012 *)
  • Maxima
    makelist(next_prime(n!+1), n,  1, 20); /* Bruno Berselli, May 20 2011 */
    
  • PARI
    for(n=1,100,print1(nextprime(n!+2),", ")); /* Joerg Arndt, May 21 2011 */

Formula

a(n) = A151800(A000142(n)+1) = A000142(n) + A037153(n).
a(n) = A151800(A038507(n)). - Michel Marcus, Feb 18 2024

Extensions

Extended by Ray Chandler, Mar 07 2010

A056111 Highest proper factor of n!+1.

Original entry on oeis.org

1, 1, 1, 1, 5, 11, 103, 71, 661, 19099, 329891, 1, 36846277, 75024347, 3790360487, 22163972339, 1230752346353, 538105034941, 336967037143579, 1713311273363831, 117876683047, 1188161445853707907, 48869596859895986087, 550042909337978226383, 765041185860961084291
Offset: 0

Views

Author

Henry Bottomley, Jun 12 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Divisors[n!+1][[ -2]]

Formula

a(n) = A038507(n)/A051301(n).

Extensions

Corrected and extended by Dean Hickerson, Aug 30 2001
More terms from Amiram Eldar, Oct 07 2019

A073829 a(n) = 4*((n-1)! + 1) + n.

Original entry on oeis.org

9, 10, 15, 32, 105, 490, 2891, 20172, 161293, 1451534, 14515215, 159667216, 1916006417, 24908083218, 348713164819, 5230697472020, 83691159552021, 1422749712384022, 25609494822912023, 486580401635328024, 9731608032706560025, 204363768686837760026
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2002

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 192.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 112.

Crossrefs

See A073830 for motivation.
Cf. A038507.

Programs

  • Magma
    [4*(Factorial(n-1)+1)+n: n in [1..20]]; // Vincenzo Librandi, May 04 2014
    
  • Mathematica
    Table[(4 ((n - 1)! + 1) + n), {n, 1, 20}] (* Vincenzo Librandi, May 04 2014 *)
  • Sage
    [4*(factorial(n-1) + 1) + n for n in range(1,22)] # Stefano Spezia, Apr 21 2025

A090159 Semiprimes of the form m! + 1.

Original entry on oeis.org

25, 121, 721, 5041, 40321, 3628801, 6227020801, 87178291201, 121645100408832001, 2432902008176640001, 620448401733239439360001, 15511210043330985984000001, 403291461126605635584000001, 304888344611713860501504000001, 295232799039604140847618609643520000001
Offset: 1

Views

Author

Ray Chandler, Nov 22 2003

Keywords

Crossrefs

Formula

a(n) = A078778(n)! + 1.

Extensions

Offset changed to 1 and more terms from Jinyuan Wang, Jul 31 2021

A356668 Expansion of e.g.f. Sum_{k>=0} x^k / (k! - k*x^k).

Original entry on oeis.org

1, 1, 3, 7, 37, 121, 1141, 5041, 60761, 378001, 5444461, 39916801, 729041545, 6227020801, 130767460825, 1321314894901, 31388220966961, 355687428096001, 9636906872926477, 121645100408832001, 3649432697160095561, 51223991519836175041, 1686001091666419279753
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= n! * DivisorSum[n, 1/(# * (# - 1)!^(n/#)) &]; a[0] = 1; Array[a, 23, 0] (* Amiram Eldar, Aug 22 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!-k*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, n!*sumdiv(n, d, 1/(d*(d-1)!^(n/d))));

Formula

Expansion of e.g.f. Sum_{k>=0} x^k / (k! * (1 - k*x^k/k!)).
a(n) = n! * Sum_{d|n} 1/(d * (d-1)!^(n/d)) for n > 0.
a(p) = 1 + p! for prime p.

A358389 a(n) = n * Sum_{d|n} (d + n/d - 2)!/d!.

Original entry on oeis.org

1, 3, 7, 29, 121, 745, 5041, 40425, 362917, 3629411, 39916801, 479006233, 6227020801, 87178326495, 1307674369891, 20922790211057, 355687428096001, 6402373709009185, 121645100408832001, 2432902008212933061, 51090942171709581289, 1124000727778046764823
Offset: 1

Views

Author

Seiichi Manyama, Nov 13 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*DivisorSum[n, ((# + n/# - 2)!)/(#!) &], {n, 22}] (* Michael De Vlieger, Nov 13 2022 *)
  • PARI
    a(n) = n*sumdiv(n, d, (d+n/d-2)!/d!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*(x/(1-x^k))^k))

Formula

G.f.: Sum_{k>0} k! * (x/(1 - x^k))^k.
If p is prime, a(p) = 1 + p!.

A090160 Greater prime factor of semiprimes in A090159.

Original entry on oeis.org

5, 11, 103, 71, 661, 329891, 75024347, 3790360487, 1713311273363831, 117876683047, 765041185860961084291, 38681321803817920159601, 237649652991517758152033, 10513391193507374500051862069, 4379593820587205958191075783529691, 37280713718589679646221
Offset: 1

Views

Author

Ray Chandler, Nov 22 2003

Keywords

Crossrefs

Extensions

Offset changed to 1 and more terms from Jinyuan Wang, Aug 01 2021

A181764 Numbers n such that n!+1 is a product of two distinct prime numbers.

Original entry on oeis.org

6, 8, 10, 13, 14, 19, 20, 24, 25, 26, 28, 34, 38, 48, 54, 55, 59, 71, 75, 92, 109, 114, 115
Offset: 1

Views

Author

Keywords

Comments

n! + 1 must be the product of two distinct prime numbers and also the product of only two prime numbers counted with multiplicity. Thus, 12 is NOT a term of the sequence because 12! + 1 = 13*13*2834329. - Harvey P. Dale, Jul 22 2019
Other terms in this sequence: 392, 551, 601, 770, 772, 878, 1033, 1320, 1831, 2620, 2808, 3752, 4233, 4616, 4984, 7260. - Chai Wah Wu, Feb 28 2020

Examples

			6!+1=7*103; 8!+1=61*661; 10!+1=11*329891; 13!+1=83*75024347; 14!+1=23*3790360487; 19!+1=71*1713311273363831;..
		

Crossrefs

Programs

  • Mathematica
    fQ[n_]:=Last/@FactorInteger[n]=={1,1}; Select[Range[40], fQ[#!+1]&]

Extensions

Extended by D. S. McNeil, Nov 13 2010
One more term (114) (factored by Womack et al.) from Sean A. Irvine, May 25 2015
One more term (115) (factored by Womack et al.) from Sean A. Irvine, Feb 08 2016

A213169 a(n) = n! + n + 1.

Original entry on oeis.org

2, 3, 5, 10, 29, 126, 727, 5048, 40329, 362890, 3628811, 39916812, 479001613, 6227020814, 87178291215, 1307674368016, 20922789888017, 355687428096018, 6402373705728019, 121645100408832020, 2432902008176640021
Offset: 0

Views

Author

Olivier Gérard, Nov 02 2012

Keywords

Comments

Can be used to detect triangular tables whose rows sum to n! when decreased by 1.

Crossrefs

Programs

  • Mathematica
    Table[n! + n + 1, {n, 0, 20}]
  • Maxima
    A213169(n):=n!+n+1$
    makelist(A213169(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

A227546 a(n) = n! + n^2 + 1.

Original entry on oeis.org

2, 3, 7, 16, 41, 146, 757, 5090, 40385, 362962, 3628901, 39916922, 479001745, 6227020970, 87178291397, 1307674368226, 20922789888257, 355687428096290, 6402373705728325, 121645100408832362, 2432902008176640401, 51090942171709440442, 1124000727777607680485
Offset: 0

Views

Author

Vincenzo Librandi, Jul 26 2013

Keywords

Crossrefs

Cf. A119662 (primes of the form k! + k^2 + 1).

Programs

  • Magma
    [Factorial(n)+n^2+1: n in [0..25]];
    
  • Mathematica
    Table[n! + n^2 + 1, {n, 0, 30}]
  • Maxima
    /* By the recurrence: */ a[0]:2$ a[1]:3$ a[n]:=(n^4-5*n^3+8*n^2-5*n-1)*a[n-1]/(n^3-6*n^2+11*n -7)-(n-1)*(n^3-3*n^2+2*n-1)*a[n-2]/(n^3-6*n^2+11*n-7)$ makelist(a[n], n, 0, 21); /* Bruno Berselli, Jul 26 2013 */

Formula

(n^3 -6*n^2 +11*n -7)*a(n) -(n^4 -5*n^3 +8*n^2 -5*n -1)*a(n-1) +(n-1)*(n^3 -3*n^2 +2*n -1)*a(n-2) = 0 for n>1. - Bruno Berselli, Jul 26 2013
Previous Showing 51-60 of 91 results. Next