A037152
Smallest prime > n!+1.
Original entry on oeis.org
3, 5, 11, 29, 127, 727, 5051, 40343, 362897, 3628811, 39916817, 479001629, 6227020867, 87178291219, 1307674368043, 20922789888023, 355687428096031, 6402373705728037, 121645100408832089, 2432902008176640029
Offset: 1
-
NextPrime[Range[20]!+1] (* Harvey P. Dale, Apr 08 2012 *)
-
makelist(next_prime(n!+1), n, 1, 20); /* Bruno Berselli, May 20 2011 */
-
for(n=1,100,print1(nextprime(n!+2),", ")); /* Joerg Arndt, May 21 2011 */
A056111
Highest proper factor of n!+1.
Original entry on oeis.org
1, 1, 1, 1, 5, 11, 103, 71, 661, 19099, 329891, 1, 36846277, 75024347, 3790360487, 22163972339, 1230752346353, 538105034941, 336967037143579, 1713311273363831, 117876683047, 1188161445853707907, 48869596859895986087, 550042909337978226383, 765041185860961084291
Offset: 0
A073829
a(n) = 4*((n-1)! + 1) + n.
Original entry on oeis.org
9, 10, 15, 32, 105, 490, 2891, 20172, 161293, 1451534, 14515215, 159667216, 1916006417, 24908083218, 348713164819, 5230697472020, 83691159552021, 1422749712384022, 25609494822912023, 486580401635328024, 9731608032706560025, 204363768686837760026
Offset: 1
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 192.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 112.
A090159
Semiprimes of the form m! + 1.
Original entry on oeis.org
25, 121, 721, 5041, 40321, 3628801, 6227020801, 87178291201, 121645100408832001, 2432902008176640001, 620448401733239439360001, 15511210043330985984000001, 403291461126605635584000001, 304888344611713860501504000001, 295232799039604140847618609643520000001
Offset: 1
Offset changed to 1 and more terms from
Jinyuan Wang, Jul 31 2021
A356668
Expansion of e.g.f. Sum_{k>=0} x^k / (k! - k*x^k).
Original entry on oeis.org
1, 1, 3, 7, 37, 121, 1141, 5041, 60761, 378001, 5444461, 39916801, 729041545, 6227020801, 130767460825, 1321314894901, 31388220966961, 355687428096001, 9636906872926477, 121645100408832001, 3649432697160095561, 51223991519836175041, 1686001091666419279753
Offset: 0
-
a[n_]:= n! * DivisorSum[n, 1/(# * (# - 1)!^(n/#)) &]; a[0] = 1; Array[a, 23, 0] (* Amiram Eldar, Aug 22 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!-k*x^k))))
-
a(n) = if(n==0, 1, n!*sumdiv(n, d, 1/(d*(d-1)!^(n/d))));
A358389
a(n) = n * Sum_{d|n} (d + n/d - 2)!/d!.
Original entry on oeis.org
1, 3, 7, 29, 121, 745, 5041, 40425, 362917, 3629411, 39916801, 479006233, 6227020801, 87178326495, 1307674369891, 20922790211057, 355687428096001, 6402373709009185, 121645100408832001, 2432902008212933061, 51090942171709581289, 1124000727778046764823
Offset: 1
-
Table[n*DivisorSum[n, ((# + n/# - 2)!)/(#!) &], {n, 22}] (* Michael De Vlieger, Nov 13 2022 *)
-
a(n) = n*sumdiv(n, d, (d+n/d-2)!/d!);
-
my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*(x/(1-x^k))^k))
A090160
Greater prime factor of semiprimes in A090159.
Original entry on oeis.org
5, 11, 103, 71, 661, 329891, 75024347, 3790360487, 1713311273363831, 117876683047, 765041185860961084291, 38681321803817920159601, 237649652991517758152033, 10513391193507374500051862069, 4379593820587205958191075783529691, 37280713718589679646221
Offset: 1
Offset changed to 1 and more terms from
Jinyuan Wang, Aug 01 2021
A181764
Numbers n such that n!+1 is a product of two distinct prime numbers.
Original entry on oeis.org
6, 8, 10, 13, 14, 19, 20, 24, 25, 26, 28, 34, 38, 48, 54, 55, 59, 71, 75, 92, 109, 114, 115
Offset: 1
6!+1=7*103; 8!+1=61*661; 10!+1=11*329891; 13!+1=83*75024347; 14!+1=23*3790360487; 19!+1=71*1713311273363831;..
One more term (114) (factored by Womack et al.) from
Sean A. Irvine, May 25 2015
One more term (115) (factored by Womack et al.) from
Sean A. Irvine, Feb 08 2016
A213169
a(n) = n! + n + 1.
Original entry on oeis.org
2, 3, 5, 10, 29, 126, 727, 5048, 40329, 362890, 3628811, 39916812, 479001613, 6227020814, 87178291215, 1307674368016, 20922789888017, 355687428096018, 6402373705728019, 121645100408832020, 2432902008176640021
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- R. C. Castillo, On the Sum of Corresponding Factorials and Triangular Numbers: Runsums, Trapezoids and Politeness, Asia Pacific Journal of Multidisciplinary Research, 3 (2015), 95-101.
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 5.
A227546
a(n) = n! + n^2 + 1.
Original entry on oeis.org
2, 3, 7, 16, 41, 146, 757, 5090, 40385, 362962, 3628901, 39916922, 479001745, 6227020970, 87178291397, 1307674368226, 20922789888257, 355687428096290, 6402373705728325, 121645100408832362, 2432902008176640401, 51090942171709440442, 1124000727777607680485
Offset: 0
Cf.
A119662 (primes of the form k! + k^2 + 1).
-
[Factorial(n)+n^2+1: n in [0..25]];
-
Table[n! + n^2 + 1, {n, 0, 30}]
-
/* By the recurrence: */ a[0]:2$ a[1]:3$ a[n]:=(n^4-5*n^3+8*n^2-5*n-1)*a[n-1]/(n^3-6*n^2+11*n -7)-(n-1)*(n^3-3*n^2+2*n-1)*a[n-2]/(n^3-6*n^2+11*n-7)$ makelist(a[n], n, 0, 21); /* Bruno Berselli, Jul 26 2013 */
Comments