cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A020918 Expansion of 1/(1-4*x)^(7/2).

Original entry on oeis.org

1, 14, 126, 924, 6006, 36036, 204204, 1108536, 5819814, 29745716, 148728580, 730122120, 3528923580, 16830250920, 79342611480, 370265520240, 1712478031110, 7857252142740, 35794148650260
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A000984 with A038845, also convolution of A000302 with A002802, also convolution of A002457 with A002697. - Rui Duarte, Oct 08 2011
5*a(n) is the number of (n+3) X 2 Young tableaux with a four horizontal walls between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021], A000984 for one horizontal wall, A002457 for two, and A002802 for three. - Michael Wallner, Mar 09 2022

Crossrefs

Programs

  • GAP
    List([0..30], n-> Binomial(2*n+6, n+3)*Binomial(n+3, 3)/20); # G. C. Greubel, Jul 20 2019
  • Magma
    [Binomial(2*n+6, n+3)*Binomial(n+3, 3)/20: n in [0..30]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    seq(binomial(2*n,n)*binomial(n,(n-3))/20, n=2..21); # Zerinvary Lajos, May 05 2007
    seq(simplify(4^n*hypergeom([-n,-5/2], [1], 1)),n=0..18); # Peter Luschny, Apr 26 2016
  • Mathematica
    CoefficientList[Series[1/(1-4x)^(7/2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 04 2013 *)
  • PARI
    vector(30, n, n--; binomial(2*n+6, n+3)*binomial(n+3, 3)/20 ) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [binomial(2*n+6, n+3)*binomial(n+3, 3)/20 for n in (0..30)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n) = binomial(n+3, 3)*A000984(n+3)/A000984(3), where A000984 are the central binomial coefficients. - Wolfdieter Lang
a(n) ~ 8/15*Pi^(-1/2)*n^(5/2)*2^(2*n)*{1 + 35/8*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = Sum_{a+b+c+d+e+f+g=n} f(a)*f(b)*f(c)*f(d)*f(e)*f(f)*f(g) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
a(n) = A000292(n)*A000984(n+2)/20. - Zerinvary Lajos, May 05 2007
From Rui Duarte, Oct 08 2011: (Start)
a(n) = ((2n+5)(2n+3)(2n+1)/(5*3*1)) * binomial(2n, n).
a(n) = binomial(2n+6, 6) * binomial(2n, n) / binomial(n+3, 3).
a(n) = binomial(n+3, 3) * binomial(2n+6, n+3) / binomial(6, 3). (End)
a(n) = 4^n*hypergeom([-n,-5/2], [1], 1). - Peter Luschny, Apr 26 2016
Boas-Buck recurrence: a(n) = (14/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+3, 3). See a comment there. - Wolfdieter Lang, Aug 10 2017
From Amiram Eldar, Apr 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 10*sqrt(3)*Pi - 160/3.
Sum_{n>=0} (-1)^n/a(n) = 10*sqrt(5)*log(phi) - 320/3, where phi is the golden ratio (A001622). (End)
D-finite with recurrence n*a(n) +2*(-2*n-5)*a(n-1)=0. - R. J. Mathar, Aug 01 2022

A040075 5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.

Original entry on oeis.org

1, 20, 240, 2240, 17920, 129024, 860160, 5406720, 32440320, 187432960, 1049624576, 5725224960, 30534533120, 159719096320, 821412495360, 4161823309824, 20809116549120, 102821517066240, 502682972323840, 2434043865989120, 11683410556747776, 55635288365465600
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A020920 with A000984 (central binomial coefficients).
With a different offset, number of n-permutations (n=5) of 5 objects u, v, w, z, x with repetition allowed, containing exactly four (4)u's. Example: a(1)=20 because we have uuuuv, uuuvu, uuvuu, uvuuu, vuuuu, uuuuw, uuuwu, uuwuu, uwuuu, wuuuu, uuuuz, uuuzu, uuzuu, uzuuu, zuuuu, uuuux, uuuxu, uuxuu, uxuuu and xuuuu. - Zerinvary Lajos, May 19 2008
Also convolution of A000302 with A038846, also convolution of A002457 with A020918, also convolution of A002697 with A038845, also convolution of A002802 with A002802. [Rui Duarte, Oct 08 2011]

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+4, 4)); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^n*Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i, j)*4^(i-4), j =i-4), i=4..22); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+4,4)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
    spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, Z, Z, Z, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/24, n=4..34); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Table[Binomial[n+4,4]*4^n, {n,0,30}] (* Michael De Vlieger, Aug 21 2015 *)
  • PARI
    vector(30, n, n--; 4^n*binomial(n+4, 4)) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,4)/2^8 for n in range(4, 34)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+4, 4)*4^n.
G.f.: 1/(1-4*x)^5.
a(n) = Sum_{ i_1+i_2+i_3+i_4+i_5+i_6+i_7+i_8+i_9+i_10 = n } f(i_1)*f(i_2) *f(i_3)*f(i_4)*f(i_5)*f(i_6)*f(i_7)*f(i_8)*f(i_9)*f(i_10) with f(k)=A000984(k). - Rui Duarte, Oct 08 2011
E.g.f.: (3 + 48*x + 144*x^2 + 128*x^3 + 32*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 376/3 - 432*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 2000*log(5/4) - 1336/3. (End)

A081140 10th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 30, 600, 10000, 150000, 2100000, 28000000, 360000000, 4500000000, 55000000000, 660000000000, 7800000000000, 91000000000000, 1050000000000000, 12000000000000000, 136000000000000000, 1530000000000000000
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A011557 (powers of 10).

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), this sequence (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [10^n* Binomial(n+2, 2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
  • Mathematica
    Table[10^(n-2)*Binomial[n, 2], {n, 0, 30}] (* G. C. Greubel, May 13 2021 *)

Formula

a(n) = 30*a(n-1) - 300*a(n-2) + 1000*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 10^(n-2)*binomial(n, 2).
G.f.: x^2/(1-10*x)^3.
E.g.f.: (x^2/2)*exp(10*x). - G. C. Greubel, May 13 2021
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 20 - 180*log(10/9).
Sum_{n>=2} (-1)^n/a(n) = 220*log(11/10) - 20. (End)

A081141 11th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 33, 726, 13310, 219615, 3382071, 49603708, 701538156, 9646149645, 129687123005, 1711870023666, 22254310307658, 285596982281611, 3624884775112755, 45569980029988920, 568105751040528536
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001020 (powers of 11).

Crossrefs

Cf. A001020.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), this sequence (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [11^(n-2)*Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq((11)^(n-2)*binomial(n,2), n=0..30); # G. C. Greubel, May 13 2021
  • Mathematica
    LinearRecurrence[{33,-363,1331},{0,0,1},30] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    vector(20, n, n--; 11^(n-2)*binomial(n, 2)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [11^(n-2)*binomial(n, 2) for n in range(20)] # G. C. Greubel, Nov 23 2018

Formula

a(n) = 33*a(n-1) - 363*a(n-2) + 1331*a(n-3), a(0) = a(1) = 0, a(2) = 1.
a(n) = 11^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 11*x)^3.
E.g.f.: (1/2)*exp(11*x)*x^2. - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 22 - 220*log(11/10).
Sum_{n>=2} (-1)^n/a(n) = 264*log(12/11) - 22. (End)

A027476 Third column of A027467.

Original entry on oeis.org

1, 45, 1350, 33750, 759375, 15946875, 318937500, 6150937500, 115330078125, 2114384765625, 38058925781250, 674680957031250, 11806916748046875, 204350482177734375, 3503151123046875000, 59553569091796875000
Offset: 3

Views

Author

Keywords

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), this sequence (q=15).

Programs

  • Magma
    [(n-1)*(n-2)/2 * 15^(n-3): n in [3..20]]; // Vincenzo Librandi, Dec 29 2012
    
  • Maple
    seq((15)^(n-3)*binomial(n-1, 2), n=3..30) # G. C. Greubel, May 13 2021
  • Mathematica
    Table[(n-1)*(n-2)/2 * 15^(n-3), {n, 3, 30}] (* Vincenzo Librandi, Dec 29 2012 *)
  • Sage
    [(15)^(n-3)*binomial(n-1,2) for n in (3..30)] # G. C. Greubel, May 13 2021

Formula

Numerators of sequence a[3,n] in (a[i,j])^4 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = 15^(n-3)*binomial(n-1, 2).
From G. C. Greubel, May 13 2021: (Start)
a(n) = 45*a(n-1) - 675*a(n-2) + 3375*a(n-3).
G.f.: x^3/(1 - 15*x)^3.
E.g.f.: (-2 + (2 - 30*x + 225*x^2)*exp(15*x))/6750. (End)
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=3} 1/a(n) = 30 - 420*log(15/14).
Sum_{n>=3} (-1)^(n+1)/a(n) = 480*log(16/15) - 30. (End)

A081142 12th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 36, 864, 17280, 311040, 5225472, 83607552, 1289945088, 19349176320, 283787919360, 4086546038784, 57954652913664, 811365140791296, 11234286564802560, 154070215745863680, 2095354934143746048
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001021 (powers of 12).

Crossrefs

Cf. A001021.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), this sequence (q=12), A027476 (q=15).

Programs

  • GAP
    List([0..20],n->12^(n-2)*Binomial(n,2)); # Muniru A Asiru, Nov 24 2018
  • Magma
    [12^(n-2)* Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(coeff(series(x^2/(1-12*x)^3,x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    LinearRecurrence[{36,-432,1728},{0,0,1},30] (* or *) Table[(n-1) (n-2) 3^(n-3) 2^(2n-7),{n,20}] (* Harvey P. Dale, Jul 25 2013 *)
  • PARI
    vector(20, n, n--; 2^(2*n-5)*3^(n-2)*n*(n-1)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [2^(2*n-5)*3^(n-2)*n*(n-1) for n in range(20)] # G. C. Greubel, Nov 23 2018
    

Formula

a(n) = 36*a(n-1) - 432*a(n-2) + 1728*a(n-3), a(0) = a(1) = 0, a(2) = 1.
a(n) = 12^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 12*x)^3.
a(n) = 2^(2*n-5)*3^(n-2)*n*(n-1). - Harvey P. Dale, Jul 25 2013
E.g.f.: (1/2)*exp(12*x)*x^2. - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 24 - 264*log(12/11).
Sum_{n>=2} (-1)^n/a(n) = 312*log(13/12) - 24. (End)

A054335 A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(sqrt(1-4*z)-x*z).
Riordan array (1/sqrt(1-4*x),x/sqrt(1-4*x)). - Paul Barry, May 06 2009
The matrix inverse is apparently given by deleting the leftmost column from A206022. - R. J. Mathar, Mar 12 2013

Examples

			Triangle begins:
    1;
    2,    1;
    6,    4,   1;
   20,   16,   6,   1;
   70,   64,  30,   8,  1;
  252,  256, 140,  48, 10,  1;
  924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
    2,   1;
    2,   2,  1;
    0,   2,  2,  1;
   -2,   0,  2,  2,  1;
    0,  -2,  0,  2,  2,  1;
    4,   0, -2,  0,  2,  2, 1;
    0,   4,  0, -2,  0,  2, 2, 1;
  -10,   0,  4,  0, -2,  0, 2, 2, 1;
    0, -10,  0,  4,  0, -2, 0, 2, 2, 1; (End)
		

Crossrefs

Row sums: A026671.

Programs

  • GAP
    T:= function(n, k)
        if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
        else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
        fi;
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
    [[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    A054335 := proc(n,k)
        if k <0 or k > n then
            0 ;
        elif type(k,odd) then
            kprime := floor(k/2) ;
            binomial(n-kprime-1,kprime)*4^(n-k) ;
        else
            kprime := k/2 ;
            binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2013
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
    a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
  • PARI
    T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    def T(n, k):
        if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
        else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n, 2*k+1) = binomial(n-k-1, k)*4^(n-2*k-1), a(n, 2*k) = binomial(2*(n-k), n-k)*binomial(n-k, k)/binomial(2*k, k), k >= 0, n >= m >= 0; a(n, m) := 0 if n
Column recursion: a(n, m)=2*(2*n-m-1)*a(n-1, m)/(n-m), n>m >= 0, a(m, m) := 1.
G.f. for column m: cbie(x)*(x*cbie(x))^m, with cbie(x) := 1/sqrt(1-4*x).
G.f.: 1/(1-x*y-2*x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - Paul Barry, May 06 2009
Sum_{k>=0} T(n,2*k)*(-1)^k*A000108(k) = A000108(n+1). - Philippe Deléham, Jan 30 2012
Sum_{k=0..floor(n/2)} T(n-k,n-2*k) = A098615(n). - Philippe Deléham, Feb 01 2012
T(n,k) = 4*T(n-1,k) + T(n-2,k-2) for k>=1. - Philippe Deléham, Feb 02 2012
Vertical recurrence: T(n,k) = 1*T(n-1,k-1) + 2*T(n-2,k-1) + 6*T(n-3,k-1) + 20*T(n-4,k-1) + ... for k >= 1 (the coefficients 1, 2, 6, 20, ... are the central binomial coefficients A000984). - Peter Bala, Oct 17 2015

A020920 Expansion of 1/(1-4*x)^(9/2).

Original entry on oeis.org

1, 18, 198, 1716, 12870, 87516, 554268, 3325608, 19122246, 106234700, 573667380, 3024791640, 15628090140, 79342611480, 396713057400, 1957117749840, 9540949030470, 46021048264620, 219878341708740, 1041528987041400, 4895186239094580, 22844202449108040
Offset: 0

Keywords

Comments

Also convolution of A000984 with A038846, also convolution of A000302 with A020918, also convolution of A002457 with A038845, also convolution of A002697 with A002802. - Rui Duarte, Oct 08 2011

Crossrefs

Programs

  • GAP
    List([0..30], n-> Binomial(n+4, 4)*Binomial(2*(n+4), n+4)/70) # G. C. Greubel, Jul 20 2019
  • Magma
    [(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/105: n in [0..30]]; // Vincenzo Librandi, Jul 05 2013
    
  • Maple
    seq(binomial(2*n+8, n+4)*binomial(n+4, n)/70, n=0..30); # Zerinvary Lajos, May 05 2007
  • Mathematica
    CoefficientList[Series[1/(1-4x)^(9/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
  • PARI
    vector(30, n, n--; m=n+4; binomial(m, 4)*binomial(2*m, m)/70) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [binomial(n+4, 4)*binomial(2*(n+4), n+4)/70 for n in (0..30)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n) = binomial(n+4, 4)*A000984(n+4)/A000984(4), where A000984 are the central binomial coefficients. - Wolfdieter Lang
a(n) = Sum_{ a+b+c+d+e+f+g+h+i=n} f(a)*f(b)*f(c)*f(d)*f(e)*f(f)*f(g) *f(h)*f(i) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
a(n) = A000332(n+4)*A000984(n+4)/70. - Zerinvary Lajos, May 05 2007
From Rui Duarte, Oct 08 2011: (Start)
a(n) = ((2n+7)(2n+5)(2n+3)(2n+1)/(7*5*3*1)) * binomial(2n, n).
a(n) = binomial(2n+8, 8) * binomial(2n, n) / binomial(n+4, 4).
a(n) = binomial(n+4, 4) * binomial(2n+8, n+4) / binomial(8, 4). (End)
Boas-Buck recurrence: a(n) = (18/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+4, 4). See a comment there.
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 1148/5 - 42*sqrt(3)*Pi.
Sum_{n>=0} (-1)^n/a(n) = 700*sqrt(5)*log(phi) - 11284/15, where phi is the golden ratio (A001622). (End)

A020922 Expansion of 1/(1-4*x)^(11/2).

Original entry on oeis.org

1, 22, 286, 2860, 24310, 184756, 1293292, 8498776, 53117350, 318704100, 1848483780, 10418726760, 57302997180, 308554600200, 1630931458200, 8480843582640, 43464323361030, 219878341708740, 1099391708543700, 5439095821216200, 26651569523959380, 129450480544945560
Offset: 0

Keywords

Comments

Also convolution of A000984 with A040075, also convolution of A000302 with A020920, also convolution of A002457 with A038846, also convolution of A002697 with A020918, also convolution of A002802 with A038845. - Rui Duarte, Oct 08 2011

Programs

  • GAP
    List([0..30], n-> Binomial(n+5, 5)*Binomial(2*n+10, n+5)/252); # G. C. Greubel, Jul 20 2019
  • Magma
    [(2*n+9)*(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/945: n in [0..30]] // Vincenzo Librandi, Jul 05 2013
    
  • Mathematica
    CoefficientList[Series[1/(1-4x)^(11/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
  • PARI
    vector(30, n, n--; m=n+5; binomial(m, 5)*binomial(2*m, m)/252) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [binomial(n+5, 5)*binomial(2*n+10, n+5)/252 for n in (0..30)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n) = binomial(n+5, 5)*A000984(n+5)/A000984(5), where A000984 are central binomial coefficients. - Wolfdieter Lang
From Rui Duarte, Oct 08 2011: (Start)
a(n) = ((2n+9)(2n+7)(2n+5)(2n+3)(2n+1)/(9*7*5*3*1)) * binomial(2n, n).
a(n) = binomial(2n+10, 10) * binomial(2n, n) / binomial(n+5, 5).
a(n) = binomial(n+5, 5) * binomial(2n+10, n+5) / binomial(10, 5).
a(n) = Sum_{ i_1+i_2+i_3+i_4+i_5+i_6+i_7+i_8+i_9+i_10+i_11 = n } f(i_1)* f(i_2)*f(i_3)*f(i_4)*f(i_5)*f(i_6)*f(i_7)*f(i_8)*f(i_9)*f(i_10)*f(i_11) with f(k)=A000984(k). (End)
Boas-Buck recurrence: a(n) = (22/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+5, 5). See a comment there. - Wolfdieter Lang, Aug 10 2017
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 162*sqrt(3)*Pi - 30816/35.
Sum_{n>=0} (-1)^n/a(n) = 4500*sqrt(5)*log(phi) - 33888/7, where phi is the golden ratio (A001622). (End)

A081130 Square array of binomial transforms of (0,0,1,0,0,0,...), read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 6, 6, 0, 0, 0, 1, 9, 24, 10, 0, 0, 0, 1, 12, 54, 80, 15, 0, 0, 0, 1, 15, 96, 270, 240, 21, 0, 0, 0, 1, 18, 150, 640, 1215, 672, 28, 0, 0, 0, 1, 21, 216, 1250, 3840, 5103, 1792, 36, 0, 0, 0, 1, 24, 294, 2160, 9375, 21504, 20412, 4608, 45, 0
Offset: 0

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Rows, of the square array, are three-fold convolutions of sequences of powers.

Examples

			The array begins as:
  0,  0,  0,   0,   0,    0, ...
  0,  0,  0,   0,   0,    0, ...
  0,  1,  1,   1,   1,    1, ... A000012
  0,  3,  6,   9,  12,   15, ... A008585
  0,  6, 24,  54,  96,  150, ... A033581
  0, 10, 80, 270, 640, 1250, ... A244729
The antidiagonal triangle begins as:
  0;
  0, 0;
  0, 0, 0;
  0, 0, 1, 0;
  0, 0, 1, 3,  0;
  0, 0, 1, 6,  6,  0;
  0, 0, 1, 9, 24, 10, 0;
		

Crossrefs

Main diagonal: A081131.
Rows: A000012 (n=2), A008585 (n=3), A033581 (n=4), A244729 (n=5).
Columns: A000217 (k=1), A001788 (k=2), A027472 (k=3), A038845 (k=4), A081135 (k=5), A081136 (k=6), A027474 (k=7), A081138 (k=8), A081139 (k=9), A081140 (k=10), A081141 (k=11), A081142 (k=12), A027476 (k=15).

Programs

  • Magma
    [k eq n select 0 else (n-k)^(k-2)*Binomial(k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
    
  • Mathematica
    Table[If[k==n, 0, (n-k)^(k-2)*Binomial[k, 2]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 14 2021 *)
  • PARI
    T(n, k)=if (k==0, 0, k^(n-2)*binomial(n, 2));
    seq(nn) = for (n=0, nn, for (k=0, n, print1(T(k, n-k), ", ")); );
    seq(12) \\ Michel Marcus, May 14 2021
  • Sage
    flatten([[0 if (k==n) else (n-k)^(k-2)*binomial(k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021
    

Formula

T(n, k) = k^(n-2)*binomial(n, 2), with T(n, 0) = 0 (square array).
T(n, n) = A081131(n).
Rows have g.f. x^3/(1-k*x)^n.
From G. C. Greubel, May 14 2021: (Start)
T(k, n-k) = (n-k)^(k-2)*binomial(k,2) with T(n, n) = 0 (antidiagonal triangle).
Sum_{k=0..n} T(n, n-k) = A081197(n). (End)

Extensions

Term a(5) corrected by G. C. Greubel, May 14 2021
Previous Showing 11-20 of 34 results. Next