A049027
G.f.: (1-2*x*c(x))/(1-3*x*c(x)) where c(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. for Catalan numbers A000108.
Original entry on oeis.org
1, 1, 4, 17, 74, 326, 1446, 6441, 28770, 128750, 576944, 2587850, 11615932, 52167688, 234383146, 1053386937, 4735393794, 21291593238, 95747347176, 430624242942, 1936925461644, 8712882517188, 39195738193836, 176335080590442, 793336332850164, 3569368545752076
Offset: 0
G.f. = 1 + x + 4*x^2 + 17*x^3 + 74*x^4 + 326*x^5 + 1446*x^6 + 6441*x^7 + ...
- L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1 and arXiv version, arXiv:1505.05568 [math.CO], 2015.
- Paul Barry and Arnauld Mesinga Mwafise, Classical and Semi-Classical Orthogonal Polynomials Defined by Riordan Arrays, and Their Moment Sequences, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.5.
- Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy, Catalan-Spitzer permutations, arXiv:2310.06288 [math.CO], 2023. See p. 20.
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017)
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
-
[1] cat [n eq 1 select 1 else (9*Self(n-1)-Catalan(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Jun 25 2015
-
a:= proc(n) option remember; `if`(n<3, 1+3*n*(n-1)/2,
(17/2-6/n)*a(n-1)-(18-27/n)*a(n-2))
end:
seq(a(n), n=0..28); # Alois P. Heinz, Jan 28 2020
-
Table[SeriesCoefficient[2/(3-1/Sqrt[1-4*x]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
FunctionExpand@Table[3^(2n-1)/2^(n+1) + 2^n (2n-1)!! Hypergeometric2F1[1, n + 1/2, n + 2, 8/9]/(9 (n + 1)!) + 2 KroneckerDelta[n]/3, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 08 2016 *)
-
{a(n) = if( n<1, n==0, polcoeff( serreverse( x * (1 + 2*x) / (1 + 3*x)^2 + x * O(x^n) ), n))}; /* Michael Somos, Apr 08 2007 */
-
{a(n) = if( n<0, 0, polcoeff( 2 / (3 - 1 / sqrt(1 - 4*x + x * O(x^n))), n))}; /* Michael Somos, Apr 08 2007 */
-
(2/(3-1/sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019
A094527
Triangle T(n,k), read by rows, defined by T(n,k) = binomial(2*n,n-k).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 15, 6, 1, 70, 56, 28, 8, 1, 252, 210, 120, 45, 10, 1, 924, 792, 495, 220, 66, 12, 1, 3432, 3003, 2002, 1001, 364, 91, 14, 1, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1, 184756, 167960
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 2 1
2: 6 4 1
3: 20 15 6 1
4: 70 56 28 8 1
5: 252 210 120 45 10 1
6: 924 792 495 220 66 12 1
7: 3432 3003 2002 1001 364 91 14 1
8: 12870 11440 8008 4368 1820 560 120 16 1
9: 48620 43758 31824 18564 8568 3060 816 153 18 1
10: 184756 167960 125970 77520 38760 15504 4845 1140 190 20 1
... Reformatted ad extended by _Wolfdieter Lang_, Nov 22 2012
From _Paul Barry_, Sep 07 2009: (Start)
Production array is
2, 1,
2, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Nov 22 2012: (Start)
Recurrence from the Riordan A-sequence [1,2,1]: T(4,1) = 56 = 1*T(3,0) + 2*T(3,1) + 1*T(3,2) = 1*20 + 2*15 + 1*6.
Recurrence from the Riordan Z-sequence [2,2]: T(7,0) = 3432 = 2*T(6,0) + 2*T(6,1) = 2*924 + 2*792. See the _Philippe Deléham_ comment above. (End)
- Indranil Ghosh, Rows 0..100 of triangle, flattened
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 19.
- A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From _N. J. A. Sloane_, Sep 16 2012
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263
- T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
-
A094527 := proc(n,k)
binomial(2*n,n-k) ;
end proc: # R. J. Mathar, Jun 04 2013
-
T[n_, k_] := Binomial[2*n, n - k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
A076025
Expansion of g.f.: (1-3*x*C)/(1-4*x*C) where C = (1 - sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers A000108.
Original entry on oeis.org
1, 1, 5, 26, 137, 726, 3858, 20532, 109361, 582782, 3106550, 16562668, 88314634, 470942044, 2511443268, 13393472616, 71428622337, 380940866574, 2031641406798, 10835261623356, 57787472903502, 308197667445204, 1643712737618748, 8766437439778776, 46754218658948922
Offset: 0
- L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
- Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy, Catalan-Spitzer permutations, arXiv:2310.06288 [math.CO], 2023. See p. 20.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1- 3*Sqrt(1-4*x))/(2-4*Sqrt(1-4*x)) )); // G. C. Greubel, May 04 2019
-
CoefficientList[Series[(1-3*Sqrt[1-4*x])/(2-4*Sqrt[1-4*x]),{x,0,30}],x] (* Vaclav Kotesovec, Dec 09 2013 *)
Flatten[{1,Table[FullSimplify[(2*n)! * Hypergeometric2F1Regularized[1, n+1/2, n+2, 3/4] / (16*n!) + 2^(4*n-1)/3^(n+1)], {n,1,30}]}] (* Vaclav Kotesovec, Dec 09 2013 *)
-
my(x='x+O('x^30)); Vec((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))) \\ G. C. Greubel, May 04 2019
-
((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 04 2019
A000515
a(n) = (2n)!(2n+1)!/n!^4, or equally (2n+1)*binomial(2n,n)^2.
Original entry on oeis.org
1, 12, 180, 2800, 44100, 698544, 11099088, 176679360, 2815827300, 44914183600, 716830370256, 11445589052352, 182811491808400, 2920656969720000, 46670906271240000, 745904795339462400, 11922821963004219300, 190600129650794094000, 3047248986392325330000
Offset: 0
- E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.
- A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- G. E. Andrews and P. Paule, Some questions concerning computer-generated proofs of a binomial double-sum identity, J. Symbolic Computation 11(1994), 1-7.
- D. Galakhov, A. Mironov and A. Morozov, Wall Crossing Invariants: from quantum mechanics to knots, arXiv preprint arXiv:1410.8482 [hep-th], 2014. See Eq. (A.15).
- R. K. Guy, Letter to N. J. A. Sloane, Sep 1986
- J. E. Lauer, Letter to N. J. A. Sloane, Dec 1980
- D. H. Lehmer, Review of A. N. Lowan et al., "Table of the zeros of the Legendre polynomials of order 1-16...", in Math. Tables Aids Computation (MTAC), 1 (1943-1945), 52-53.
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Omega3. Remark 3 p. 1882.
- I. Nemes et al., How to do Monthly problems with your computer, Amer. Math. Monthly, 104 (1997), 505-519.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013 (see Omega_3).
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
Cf.
A002894,
A005249,
A002457,
A000108,
A039598,
A024492,
A000894,
A228329,
A000515,
A228330,
A228331,
A228332,
A228333.
-
[(2*n+1)*Binomial(2*n,n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
-
with(linalg): for n from 1 to 24 do print(det(hilbert(n))/det(hilbert(n+1))): od;
-
A000515[n_] := (2*n + 1)*Binomial[2 n, n]^2 (* Enrique Pérez Herrero, Mar 31 2010 *)
Table[(2 n + 1) (n + 1)^2 CatalanNumber[n]^2, {n, 0, 18}] (* Jan Mangaldan, Sep 23 2021 *)
-
vector(100, n, n--; (2*n+1)*binomial(2*n,n)^2) \\ Altug Alkan, Oct 08 2015
A008313
Triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 1, 5, 4, 1, 5, 9, 5, 1, 14, 14, 6, 1, 14, 28, 20, 7, 1, 42, 48, 27, 8, 1, 42, 90, 75, 35, 9, 1, 132, 165, 110, 44, 10, 1, 132, 297, 275, 154, 54, 11, 1, 429, 572, 429, 208, 65, 12, 1, 429, 1001, 1001, 637, 273, 77, 13, 1
Offset: 0
.|...1
.|.......1
.|...1.......1
.|.......2.......1
.|...2.......3.......1
.|.......5.......4.......1
.|...5.......9.......5.......1
.|......14......14.......6.......1
.|..14......28......20.......7.......1
.|......42......48......27.......8.......1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
- P. J. Larcombe, A question of proof..., Bull. Inst. Math. Applic. (IMA), 30, Nos. 3/4, 1994, 52-54.
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv preprint arXiv:1507.04838 [math.CO], 2015-2018.
- Tom Halverson, Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
- Vaughan F. R. Jones, The Jones Polynomial, 18 August 2005, see the diagram on page 7. - Paul Curtz, Jun 22 2011
- P. Mongelli, Kazhdan-Lusztig polynomials of Boolean elements, arXiv preprint arXiv:1111.2945 [math.CO], 2011.
- Index entries for sequences related to Chebyshev polynomials.
Row sums =
A001405 (central binomial coefficients).
-
a008313 n k = a008313_tabf !! n !! k
a008313_row n = a008313_tabf !! n
a008313_tabf = map (filter (> 0)) a053121_tabl
-- Reinhard Zumkeller, Feb 24 2012
-
T := proc(n, k): if n=0 then 1 else binomial(n-1, floor(n/2 )-k) -binomial(n-1, floor(n/2) -k-2) fi: end: seq(seq(T(n, k), k = 0..floor(n/2)), n = 0..14); # Johannes W. Meijer, Jul 10 2011, revised Nov 22 2012
-
t[n_, k_] /; n < k || OddQ[n - k] = 0; t[n_, k_] := (k+1)*Binomial[n+1, (n-k)/2]/(n+1); Flatten[ Table[ t[n, k], {n, 0, 15}, {k, Mod[n, 2], n + Mod[n, 2], 2}]] (* Jean-François Alcover, Jan 12 2012 *)
-
{T(n, k) = if( k<0 || 2*k>n, 0, polcoeff((1 - x) * (1 + x)^n, n\2 - k))}; /* Michael Somos, May 28 2005 */
-
T(n, k) = binomial(n-1, n\2-k)-binomial(n-1, n\2-k-2);
for(n=0, 14, for(k=0, n\2, print1(T(n,k),", "))); \\ Seiichi Manyama, Mar 24 2025
-
# Algorithm of L. Seidel (1877)
# Prints the first n rows of the triangle.
def A008313_triangle(n) :
D = [0]*((n+5)//2); D[1] = 1
b = True; h = 1
for i in range(n) :
if b :
for k in range(h,0,-1) : D[k] += D[k-1]
h += 1
else :
for k in range(1,h, 1) : D[k] += D[k+1]
b = not b
print([D[z] for z in (1..h-1)])
A008313_triangle(13) # Peter Luschny, May 01 2012
A067323
Catalan triangle A028364 with row reversion.
Original entry on oeis.org
1, 2, 1, 5, 3, 2, 14, 9, 7, 5, 42, 28, 23, 19, 14, 132, 90, 76, 66, 56, 42, 429, 297, 255, 227, 202, 174, 132, 1430, 1001, 869, 785, 715, 645, 561, 429, 4862, 3432, 3003, 2739, 2529, 2333, 2123, 1859, 1430, 16796, 11934, 10504, 9646, 8986, 8398, 7810, 7150, 6292, 4862
Offset: 0
Triangle begins:
1;
2, 1;
5, 3, 2;
14, 9, 7, 5;
42, 28, 23, 19, 14;
132, 90, 76, 66, 56, 42;
429, 297, 255, 227, 202, 174, 132;
1430, 1001, 869, 785, 715, 645, 561, 429;
4862, 3432, 3003, 2739, 2529, 2333, 2123, 1859, 1430;
...
- B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (19) - (23), p. 672.
- B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eqs. (43), (44), pp. 1501-2 and eq.(81) with eqs.(80) and (81).
- T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer, 1999, pp. 269, 275.
- G. Schuetz and E. Domany, Phase Transitions in an Exactly Soluble one-Dimensional Exclusion Process, J. Stat. Phys. 72 (1993) 277-295, eq. (2.18), p. 283, with eqs. (2.13)-(2.15).
- Alois P. Heinz, Rows n = 0..140, flattened
- Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, Lucky cars and lucky spots in parking functions, arXiv:2412.07873 [math.CO], 2024. See p. 14.
- Wolfdieter Lang, First 10 rows.
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(
expand(b(n-1, j)*`if`(i>n, x, 1)), j=1..i))
end:
T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n))(b((n+1)$2)):
seq(T(n), n=0..10); # Alois P. Heinz, Nov 28 2015
-
t[n_, k_] := Sum[ CatalanNumber[n - j]*CatalanNumber[j], {j, 0, k}]; Flatten[ Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}]] (* Jean-François Alcover, Jul 17 2013 *)
A029760
A sum with next-to-central binomial coefficients of even order, Catalan related.
Original entry on oeis.org
1, 8, 47, 244, 1186, 5536, 25147, 112028, 491870, 2135440, 9188406, 39249768, 166656772, 704069248, 2961699667, 12412521388, 51854046982, 216013684528, 897632738722, 3721813363288, 15401045060572, 63616796642368, 262357557683422, 1080387930269464
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1657
- Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Sittipong Thamrongpairoj, Dowling Set Partitions, and Positional Marked Patterns, Ph. D. Dissertation, University of California-San Diego (2019).
-
a[n_] := (n+3)^2 CatalanNumber[n+2]/2 - 2^(2n+3);
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Sep 25 2018 *)
A050144
T(n,k) = M(2n-1,n-1,k-1), 0 <= k <= n, n >= 0, where M(p,q,r) is the number of upright paths from (0,0) to (p,p-q) that meet the line y = x+r and do not rise above it.
Original entry on oeis.org
0, 1, 0, 1, 1, 1, 2, 3, 4, 1, 5, 9, 14, 6, 1, 14, 28, 48, 27, 8, 1, 42, 90, 165, 110, 44, 10, 1, 132, 297, 572, 429, 208, 65, 12, 1, 429, 1001, 2002, 1638, 910, 350, 90, 14, 1, 1430, 3432, 7072, 6188, 3808, 1700, 544, 119, 16, 1
Offset: 0
Triangle begins:
0
1 0
1 1 1
2 3 4 1
5 9 14 6 1
14 28 48 27 8 1
42 90 165 110 44 10 1
132 297 572 429 208 65 12 1
429 1001 2002 1638 910 350 90 14 1
1430 3432 7072 6188 3808 1700 544 119 16 1
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 29.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
{M(2n, 0, k)} is given by
A039599. {M(2n+1, n+1, k+1)} is given by
A039598.
Cf.
A033184,
A050153,
A000108 (column 0),
A000245 (column 1),
A002057 (column 2),
A000344 (column 3),
A003517 (column 4),
A000588 (column 5),
A003518 (column 6),
A001392 (column 7),
A003519 (column 8),
A000589 (column 9),
A090749 (column 10).
-
A050144 := proc(n,k)
if n < k then
0;
elif k =0 then
if n =0 then
0 ;
else
A000108(n-1) ;
end if;
elif k = 1 then
add( procname(n-1-j,0)*A000108(j+1),j=0..n-1) ;
elif k = 2 then
add( procname(n-j,1)*A000108(j),j=0..n) ;
else
add( procname(n-1-j,k-1)*A000108(j),j=0..n-1) ;
end if;
end proc:
seq(seq( A050144(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 30 2024
-
c[n_] := Binomial[2 n, n]/(n + 1);
t[n_, k_] := Which[k == 0, c[n - 1],
k == 1, Sum[t[n - 1 - j, 0]*c[j + 1], {j, 0, n - 2}],
k == 2, Sum[t[n - j, 1]*c[j], {j, 0, n - 1}],
k > 2, Sum[t[n - 1 - j, k - 1] c[j + 1], {j, 0, n - 2}]]
t[0, 0] = 0;
Column[Table[t[n, k], {n, 0, 10}, {k, 0, n}]]
(* Clark Kimberling, Jul 30 2024 *)
A050166
Triangle T(n,k) = M(2n,k,-1), with 0 <= k <= n, n >= 0, and array M is defined in A050144.
Original entry on oeis.org
1, 1, 2, 1, 4, 5, 1, 6, 14, 14, 1, 8, 27, 48, 42, 1, 10, 44, 110, 165, 132, 1, 12, 65, 208, 429, 572, 429, 1, 14, 90, 350, 910, 1638, 2002, 1430, 1, 16, 119, 544, 1700, 3808, 6188, 7072, 4862, 1, 18, 152, 798, 2907, 7752, 15504, 23256, 25194, 16796
Offset: 0
Triangle begins:
1;
1, 2;
1, 4, 5;
1, 6, 14, 14;
1, 8, 27, 48, 42;
...
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Y. Jiang, K. Qiu, R. Qiu, and J. Shen, On the spectrum of the middle-cube, Congressus Numerantium, 195 (2009), 195-204.
- A. Nkwanta, Lattice paths and RNA secondary structures, in: Nathaniel Dean, African Americans in Mathematics, AMS and DIMACS, 1997, ISBN 978-0-8218-0678-4, pp. 137-147.
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 29.
- E. H. M. Brietzke, An identity of Andrews and a new method for the Riordan array proof of combinatorial identities, Discrete Math., 308 (2008), 4246-4262.
- E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- L. W. Shapiro, W.-J. Woan and S. Getu, Runs, slides and moments, SIAM J. Alg. Discrete Methods, 4 (1983), 459-466.
-
Flat(List([0..10], n-> List([0..n], k-> 2*(n-k+1)* Binomial(2*n+1, k)/(2*n-k+2) ))); # G. C. Greubel, Apr 05 2019
-
[[2*(n-k+1)*Binomial(2*n+1,k)/(2*n-k+2): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
-
Table[2*Binomial[2n+1, k]*(n-k+1)/(2*n-k+2), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
-
{T(n,k) = 2*(n-k+1)*binomial(2*n+1,k)/(2*n-k+2)}; \\ G. C. Greubel, Apr 05 2019
-
[[2*(n-k+1)*binomial(2*n+1,k)/(2*n-k+2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019
More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2001
A128899
Riordan array (1,(1-2x-sqrt(1-4x))/(2x)).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 4, 1, 0, 14, 14, 6, 1, 0, 42, 48, 27, 8, 1, 0, 132, 165, 110, 44, 10, 1, 0, 429, 572, 429, 208, 65, 12, 1, 0, 1430, 2002, 1638, 910, 350, 90, 14, 1, 0, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1, 0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 5, 4, 1;
0, 14, 14, 6, 1;
0, 42, 48, 27, 8, 1;
0, 132, 165, 110, 44, 10, 1;
0, 429, 572, 429, 208, 65, 12, 1;
0, 1430, 2002, 1638, 910, 350, 90, 14, 1;
0, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1;
0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1;
...
-
# Uses function PMatrix from A357368.
PMatrix(10, n -> binomial(2*n,n)/(n+1)); # Peter Luschny, Oct 19 2022
-
T[n_, n_] := 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n - 1, k - 1] + 2 T[n - 1, k] + T[n - 1, k + 1]; T[, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 14 2019 *)
-
T(n, k) = binomial(2*n-2, n-k)-binomial(2*n-2, n-k-2); \\ Seiichi Manyama, Mar 24 2025
-
@cached_function
def T(k,n):
if k==n: return 1
if k==0: return 0
return sum(catalan_number(i)*T(k-1,n-i) for i in (1..n-k+1))
A128899 = lambda n,k: T(k,n)
for n in (0..10): print([A128899(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
Comments