cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 67 results. Next

A049027 G.f.: (1-2*x*c(x))/(1-3*x*c(x)) where c(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 4, 17, 74, 326, 1446, 6441, 28770, 128750, 576944, 2587850, 11615932, 52167688, 234383146, 1053386937, 4735393794, 21291593238, 95747347176, 430624242942, 1936925461644, 8712882517188, 39195738193836, 176335080590442, 793336332850164, 3569368545752076
Offset: 0

Views

Author

Keywords

Comments

Row sums of triangle A035324.
a(n+1) = {1, 4, 17, 74, 326, ...} is the binomial transform of A059738. - Philippe Deléham, Nov 26 2009
(1, 4, 17, 74, 326, ...) is the invert transform of the odd-indexed central binomial coefficients, A001700. - David Callan, Oct 14 2012
The sequence starting with index 1 is the INVERT transform of A001700: (1, 3, 10, 35, 126, ...) and the second INVERT transform of the Catalan numbers starting with index 1: (1, 2, 5, 14, 42, ...). - Gary W. Adamson, Jun 23 2015
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by taking the first column (k = 0) of the array equal to (1,1,3,9,27,...) - powers of 3 with 1 prepended - and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1. See my link in A001517.
1
1 1
3 4 4
9 13 17 17
27 40 57 74 74
81 121 178 252 326 326
...
(End)

Examples

			G.f. = 1 + x + 4*x^2 + 17*x^3 + 74*x^4 + 326*x^5 + 1446*x^6 + 6441*x^7 + ...
		

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Magma
    [1] cat [n eq 1 select 1 else (9*Self(n-1)-Catalan(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Jun 25 2015
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, 1+3*n*(n-1)/2,
          (17/2-6/n)*a(n-1)-(18-27/n)*a(n-2))
        end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 28 2020
  • Mathematica
    Table[SeriesCoefficient[2/(3-1/Sqrt[1-4*x]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    FunctionExpand@Table[3^(2n-1)/2^(n+1) + 2^n (2n-1)!! Hypergeometric2F1[1, n + 1/2, n + 2, 8/9]/(9 (n + 1)!) + 2 KroneckerDelta[n]/3, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 08 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x * (1 + 2*x) / (1 + 3*x)^2 + x * O(x^n) ), n))}; /* Michael Somos, Apr 08 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 / (3 - 1 / sqrt(1 - 4*x + x * O(x^n))), n))}; /* Michael Somos, Apr 08 2007 */
    
  • Sage
    (2/(3-1/sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

G.f.: x*c(x)/(1-3*x*c(x)), c(x)= g.f. of Catalan numbers A000108.
a(n+1) = Sum_{k=0..n} 2^k*comb(2n+1, n-k)*2*(k+1)/(n+k+2) - Paul Barry, Jun 22 2004
a(n) = (9*a(n-1) - Catalan(n-1))/2, n > 1. - Vladeta Jovovic, Aug 08 2004
a(n+1) = Sum_{k=0..n} A039598(n,k)*2^k. - Philippe Deléham, Mar 21 2007
G.f.: 2 / (3 - 1 / sqrt(1 - 4*x)). - Michael Somos, Apr 08 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A001045(k), for n >= 1. - Philippe Deléham, Jun 10 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i <= j), and A[i,j]=0, otherwise. Then, for n >= 1, a(n+1) = (-1)^n*charpoly(A,-3). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
4, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 2*n*a(n) + (12-17*n)*a(n-1) + 18*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ 3^(2*n-1)/2^(n+1). - Vaclav Kotesovec, Oct 08 2012
0 = a(n)*(1296*a(n+1) - 1098*a(n+2) + 180*a(n+3)) + a(n+1)*(-126*a(n+1) + 253*a(n+2) - 58*a(n+3)) + a(n+2)*(-10*a(n+2) + 4*a(n+3)) if n > 0. - Michael Somos, Jan 23 2014
O.g.f.: A(x) = 1/(1 - (1/2)*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
a(n) = 3^(2*n-1)/2^(n+1) + 2^n * (2*n-1)!! * hypergeom([1,n+1], [n+2], 8/9)/(9*(n+1)!) + 0^n * 2/3. - Vladimir Reshetnikov, Oct 08 2016

A094527 Triangle T(n,k), read by rows, defined by T(n,k) = binomial(2*n,n-k).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 15, 6, 1, 70, 56, 28, 8, 1, 252, 210, 120, 45, 10, 1, 924, 792, 495, 220, 66, 12, 1, 3432, 3003, 2002, 1001, 364, 91, 14, 1, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1, 184756, 167960
Offset: 0

Views

Author

Paul Barry, May 07 2004

Keywords

Comments

Right-hand side of even-numbered rows of Pascal's triangle.
Row sums are A032443. Reverse of A062344. Right-hand side of A034870. Binomial transform of trinomial triangle A094531.
Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 2*T(n-1,0) + 2*T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 14 2007
Central coefficients T(2n,n) are binomial(4n,n) (A005810).
The A- and Z-sequence for this Riordan triangle is [1,2,1] and [2,2], respectively. For the notion of Z- and A-sequences for Riordan arrays see the W. Lang link under A006232 with details and references. See also the Philippe Deléham comment above. - Wolfdieter Lang, Nov 22 2012

Examples

			The triangle T(n,k) begins:
  n\k      0      1      2     3     4     5    6    7   8  9 10
  0:       1
  1:       2      1
  2:       6      4      1
  3:      20     15      6     1
  4:      70     56     28     8     1
  5:     252    210    120    45    10     1
  6:     924    792    495   220    66    12    1
  7:    3432   3003   2002  1001   364    91   14    1
  8:   12870  11440   8008  4368  1820   560  120   16   1
  9:   48620  43758  31824 18564  8568  3060  816  153  18  1
  10: 184756 167960 125970 77520 38760 15504 4845 1140 190 20  1
  ... Reformatted ad extended by _Wolfdieter Lang_, Nov 22 2012
From _Paul Barry_, Sep 07 2009: (Start)
Production array is
  2, 1,
  2, 2, 1,
  0, 1, 2, 1,
  0, 0, 1, 2, 1,
  0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Nov 22 2012: (Start)
Recurrence from the Riordan A-sequence [1,2,1]: T(4,1) = 56 = 1*T(3,0) + 2*T(3,1) + 1*T(3,2) = 1*20 + 2*15 + 1*6.
Recurrence from the Riordan Z-sequence [2,2]: T(7,0) = 3432 = 2*T(6,0) + 2*T(6,1) = 2*924 + 2*792. See the _Philippe Deléham_ comment above. (End)
		

Crossrefs

Programs

  • Maple
    A094527 := proc(n,k)
        binomial(2*n,n-k) ;
    end proc: # R. J. Mathar, Jun 04 2013
  • Mathematica
    T[n_, k_] := Binomial[2*n, n - k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)

Formula

Riordan array (1/sqrt(1-4*x), (1-2*x-sqrt(1-4*x))/(2*x)). Column k has e.g.f. exp(2*x)*Bessel_I(k, 2*x). - Paul Barry, Jul 14 2005
Product of Riordan arrays (1/(1-x), x/(1-x)) (Pascal's triangle, A007318) and (1/sqrt(1-2x-3x^2), (1-x-sqrt(1-2x-3x^2))/(2x)) (A094531). Inverse is A110162. - Paul Barry, Jul 14 2005
T(n,k) = Sum_{j=0..n} C(n,j)*C(n,j-k). - Paul Barry, Mar 07 2006
T(n,k) = Sum_{h>=k} A039599(n,h). Sum_{k=0..n} T(n,k) = A032443(n). - Philippe Deléham, May 01 2006
Sum_{k=0..n} T(n,k)^2 = A036910(n). - Philippe Deléham, May 07 2006
Sum_{k=0..n} T(n,k)*(-1)^k = A088218(n). - Philippe Deléham, Mar 14 2007
From Wolfdieter Lang, Nov 22 2012: (Start)
The o.g.f. for the row polynomials P(n,x) := Sum_{k=0..n} T(n,k)*x^k is G(z,x) = (-x + (1+x)*z + x*z*c(z))/(sqrt(1-4*z)*((1+x)^2*z -x)) with c the o.g.f. of A000108 (Catalan). This follows from the Riordan property.
The o.g.f. for column no. k is (c(x)-1)^k/sqrt(1-4*x) (from the Riordan property). (End)
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - 2*x - sqrt(1 - 4*x) )/(2*x) and so belongs to the hitting time subgroup of the Riordan group (see Peart and Woan, Example 5.1).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = (1 + x)^2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
From Peter Bala, Jul 21 2015: (Start)
n-th row polynomial R(n,t) = [x^n] ( (1 + (1 + t)*x)^2/(1 + t*x) )^n.
exp ( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (2 + t)*x + (5 + 4*t + t^2)*x^2 + ... is the o.g.f. for A039598. (End)

Extensions

Entry revised by N. J. A. Sloane, Mar 23 2007

A076025 Expansion of g.f.: (1-3*x*C)/(1-4*x*C) where C = (1 - sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 5, 26, 137, 726, 3858, 20532, 109361, 582782, 3106550, 16562668, 88314634, 470942044, 2511443268, 13393472616, 71428622337, 380940866574, 2031641406798, 10835261623356, 57787472903502, 308197667445204, 1643712737618748, 8766437439778776, 46754218658948922
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

From Paul Barry, Sep 23 2009: (Start)
The Hankel transform of this sequence is 3n+1 or 1,4,7,10,... (A016777).
The Hankel transform of the aeration of this sequence is A016777 doubled, that is, 1,1,4,4,7,7,...
In general, the Hankel transform of [x^n](1-r*xc(x))/(1-(r+1)*xc(x)) is rn+1, and that of the corresponding aerated sequence is the doubled sequence of rn+1. (End)

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1- 3*Sqrt(1-4*x))/(2-4*Sqrt(1-4*x)) )); // G. C. Greubel, May 04 2019
    
  • Mathematica
    CoefficientList[Series[(1-3*Sqrt[1-4*x])/(2-4*Sqrt[1-4*x]),{x,0,30}],x] (* Vaclav Kotesovec, Dec 09 2013 *)
    Flatten[{1,Table[FullSimplify[(2*n)! * Hypergeometric2F1Regularized[1, n+1/2, n+2, 3/4] / (16*n!) + 2^(4*n-1)/3^(n+1)], {n,1,30}]}] (* Vaclav Kotesovec, Dec 09 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))) \\ G. C. Greubel, May 04 2019
    
  • Sage
    ((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 04 2019

Formula

a(n+1) = Sum_{k=0..n} 3^k*binomial(2n+1, n-k)*2*(k+1)/(n+k+2). - Paul Barry, Jun 22 2004
a(n+1) = Sum_{k=0..n} A039598(n,k)*3^k. - Philippe Deléham, Mar 21 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A015518(k), for n >= 1. - Philippe Deléham, Nov 22 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n+1)=(-1)^n*charpoly(A,-4). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
5, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 3*n*a(n) +2*(9-14*n)*a(n-1) +32*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
a(n) ~ 2^(4*n-1)/3^(n+1). - Vaclav Kotesovec, Dec 09 2013
The sequence is the INVERT transform of A049027: (1, 4, 17, 74, 326, ...) and the third INVERT transform of the Catalan sequence (1, 2, 5, ...). - Gary W. Adamson, Jun 23 2015
O.g.f.: A(x) = (1 - 1/2*Sum_{n >= 1} binomial(2*n,n)*x^n)/(1 - Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016

A000515 a(n) = (2n)!(2n+1)!/n!^4, or equally (2n+1)*binomial(2n,n)^2.

Original entry on oeis.org

1, 12, 180, 2800, 44100, 698544, 11099088, 176679360, 2815827300, 44914183600, 716830370256, 11445589052352, 182811491808400, 2920656969720000, 46670906271240000, 745904795339462400, 11922821963004219300, 190600129650794094000, 3047248986392325330000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the (n,n)-th entry in the inverse of the n-th Hilbert matrix. - Asher Auel, May 20 2001
a(n) is also the ratio of the determinants of the n-th Hilbert matrix to the (n+1)-th Hilbert matrix (see A005249), for n>0. Thus the determinant of the inverse of the n-th Hilbert matrix is the product of a(i) for i from 1 to n. (Claimed by Jud McCranie without proof, Jul 17 2000)
a(n) is the right side of the binomial sum: 2^(4*n) * Sum_{i=0..n} binomial(-1/2, i)*binomial(1/2, i). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
Right-hand side of Sum_{i=0..n} Sum_{j=0..n} binomial(i+j,j)^2 * binomial(4n-2i-2j,2n-2j).

References

  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.
  • A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(2*n+1)*Binomial(2*n,n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
    
  • Maple
    with(linalg): for n from 1 to 24 do print(det(hilbert(n))/det(hilbert(n+1))): od;
  • Mathematica
    A000515[n_] := (2*n + 1)*Binomial[2 n, n]^2 (* Enrique Pérez Herrero, Mar 31 2010 *)
    Table[(2 n + 1) (n + 1)^2 CatalanNumber[n]^2, {n, 0, 18}] (* Jan Mangaldan, Sep 23 2021 *)
  • PARI
    vector(100, n, n--; (2*n+1)*binomial(2*n,n)^2) \\ Altug Alkan, Oct 08 2015

Formula

a(n) ~ 2*Pi^-1*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
O.g.f.: (2/Pi)*EllipticE(4*sqrt(x))/(1-16*x). - Vladeta Jovovic, Jun 15 2005
E.g.f.: Sum_{n>=0} a(n)*x^(2n)/(2n)! = BesselI(0, 2*x)*(BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Vladeta Jovovic, Jun 15 2005
E.g.f.: Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)! = BesselI(0, 2x)^2*x. - Michael Somos, Jun 22 2005
E.g.f.: x*(BesselI(0, 2*x))^2 = x+(2*x^3)/(U(0)-2*x^2); U(k) = (2*x^2)*(2*k+1) + (k+1)^3 - (2*x^2)*(2*k+3)*((k+1)^3)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2011
n^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Sep 08 2013
O.g.f.: hypergeom([1/2, 3/2], [1], 16*x). - Peter Luschny, Oct 08 2015

A008313 Triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 1, 5, 4, 1, 5, 9, 5, 1, 14, 14, 6, 1, 14, 28, 20, 7, 1, 42, 48, 27, 8, 1, 42, 90, 75, 35, 9, 1, 132, 165, 110, 44, 10, 1, 132, 297, 275, 154, 54, 11, 1, 429, 572, 429, 208, 65, 12, 1, 429, 1001, 1001, 637, 273, 77, 13, 1
Offset: 0

Views

Author

Keywords

Comments

This is another reading (by shallow diagonals) of the triangle A009766; rows of Catalan triangle A008315 read backwards. - Philippe Deléham, Feb 15 2004
"The Catalan triangle is formed in the same manner as Pascal's triangle, except that no number may appear on the left of the vertical bar." [Conway and Smith]

Examples

			.|...1
.|.......1
.|...1.......1
.|.......2.......1
.|...2.......3.......1
.|.......5.......4.......1
.|...5.......9.......5.......1
.|......14......14.......6.......1
.|..14......28......20.......7.......1
.|......42......48......27.......8.......1
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
  • P. J. Larcombe, A question of proof..., Bull. Inst. Math. Applic. (IMA), 30, Nos. 3/4, 1994, 52-54.

Crossrefs

Cf. A039598, A039599. A053121 is essentially the same triangle.
Row sums = A001405 (central binomial coefficients).

Programs

  • Haskell
    a008313 n k = a008313_tabf !! n !! k
    a008313_row n = a008313_tabf !! n
    a008313_tabf = map (filter (> 0)) a053121_tabl
    -- Reinhard Zumkeller, Feb 24 2012
    
  • Maple
    T := proc(n, k): if n=0 then 1 else binomial(n-1, floor(n/2 )-k) -binomial(n-1, floor(n/2) -k-2) fi: end: seq(seq(T(n, k), k = 0..floor(n/2)), n = 0..14); # Johannes W. Meijer, Jul 10 2011, revised Nov 22 2012
  • Mathematica
    t[n_, k_] /; n < k || OddQ[n - k] = 0; t[n_, k_] := (k+1)*Binomial[n+1, (n-k)/2]/(n+1); Flatten[ Table[ t[n, k], {n, 0, 15}, {k, Mod[n, 2], n + Mod[n, 2], 2}]] (* Jean-François Alcover, Jan 12 2012 *)
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, polcoeff((1 - x) * (1 + x)^n, n\2 - k))}; /* Michael Somos, May 28 2005 */
    
  • PARI
    T(n, k) = binomial(n-1, n\2-k)-binomial(n-1, n\2-k-2);
    for(n=0, 14, for(k=0, n\2, print1(T(n,k),", "))); \\ Seiichi Manyama, Mar 24 2025
    
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle.
    def A008313_triangle(n) :
        D = [0]*((n+5)//2); D[1] = 1
        b = True; h = 1
        for i in range(n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
            print([D[z] for z in (1..h-1)])
    A008313_triangle(13) # Peter Luschny, May 01 2012

Formula

Row n: C(n-1, [n/2]-k) - C(n-1, [n/2]-k-2) for k=0, 1, ..., n.
Sum_{k>=0} T(n, k)^2 = A000108(n); A000108: Catalan numbers. - Philippe Deléham, Feb 14 2004

A067323 Catalan triangle A028364 with row reversion.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 14, 9, 7, 5, 42, 28, 23, 19, 14, 132, 90, 76, 66, 56, 42, 429, 297, 255, 227, 202, 174, 132, 1430, 1001, 869, 785, 715, 645, 561, 429, 4862, 3432, 3003, 2739, 2529, 2333, 2123, 1859, 1430, 16796, 11934, 10504, 9646, 8986, 8398, 7810, 7150, 6292, 4862
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Comments

a(N,p) equals X_{N}(N+1,p) := T_{N,p} for alpha= 1 =beta and N>=p>=1 in the Derrida et al. 1992 reference. The one-point correlation functions A000108(n)%20(Catalan)%20in%20this%20reference.%20See%20also%20the%20Derrida%20et%20al.%201993%20reference.%20In%20the%20Liggett%201999%20reference%20mu">{N} for alpha= 1 =beta equal a(N,K)/C(N+1) with C(n)=A000108(n) (Catalan) in this reference. See also the Derrida et al. 1993 reference. In the Liggett 1999 reference mu{N}{eta:eta(k)=1} of prop. 3.38, p. 275 is identical with _{N} and rho=0 and lambda=1.
Identity for each row n>=1: a(n,m)+a(n,n-m+1)= C(n+1), with C(n+1)=A000108(n+1)(Catalan) for every m=1..floor((n+1)/2). E.g., a(2k+1,k+1)=C(2*(k+1)).
The first column sequences (diagonals of A028364) are: A000108(n+1), A000245, A067324-6 for m=0..4.

Examples

			Triangle begins:
     1;
     2,    1;
     5,    3,    2;
    14,    9,    7,    5;
    42,   28,   23,   19,   14;
   132,   90,   76,   66,   56,   42;
   429,  297,  255,  227,  202,  174,  132;
  1430, 1001,  869,  785,  715,  645,  561,  429;
  4862, 3432, 3003, 2739, 2529, 2333, 2123, 1859, 1430;
  ...
		

References

  • B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (19) - (23), p. 672.
  • B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eqs. (43), (44), pp. 1501-2 and eq.(81) with eqs.(80) and (81).
  • T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer, 1999, pp. 269, 275.
  • G. Schuetz and E. Domany, Phase Transitions in an Exactly Soluble one-Dimensional Exclusion Process, J. Stat. Phys. 72 (1993) 277-295, eq. (2.18), p. 283, with eqs. (2.13)-(2.15).

Crossrefs

Cf. A001700 (row sums).
T(2n,n) gives A201205.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          expand(b(n-1, j)*`if`(i>n, x, 1)), j=1..i))
        end:
    T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n))(b((n+1)$2)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    t[n_, k_] := Sum[ CatalanNumber[n - j]*CatalanNumber[j], {j, 0, k}]; Flatten[ Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}]] (* Jean-François Alcover, Jul 17 2013 *)

Formula

a(n,m) = A028364(n,n-m), n>=m>=0, else 0.
G.f. for column m>=1 (without leading zeros): (c(x)^3)sum(C(m-1, k)*c(x)^k, k=0..m-1), with C(n, m) := (m+1)*binomial(2*n-m, n-m)/(n+1) (Catalan convolutions A033184); and for m=0: c^2(x), where c(x) is g.f. of A000108 (Catalan).
T(n,k) = Sum_{j>=0} A039598(n-k,j)*A039599(k,j). - Philippe Deléham, Feb 18 2004
G.f. for diagonal sequences: see g.f. for columns of A028364.

A029760 A sum with next-to-central binomial coefficients of even order, Catalan related.

Original entry on oeis.org

1, 8, 47, 244, 1186, 5536, 25147, 112028, 491870, 2135440, 9188406, 39249768, 166656772, 704069248, 2961699667, 12412521388, 51854046982, 216013684528, 897632738722, 3721813363288, 15401045060572, 63616796642368, 262357557683422, 1080387930269464
Offset: 0

Views

Author

Keywords

Comments

Proof by induction.
a(n) = total area below paths consisting of steps east (1,0) and north (0,1) from (0,0) to (n+2,n+2) that stay weakly below y=x. For example, the two paths with n=0 are
. _|.....|
The first has area 1 below it, the second area 0 and so a(0)=1. - David Callan, Dec 09 2004
Convolution of A000346 with A001700. - Philippe Deléham, May 19 2009

Crossrefs

Programs

  • Mathematica
    a[n_] := (n+3)^2 CatalanNumber[n+2]/2 - 2^(2n+3);
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Sep 25 2018 *)

Formula

a(n) = 4^(n+1)*Sum_{k=1..n+1} binomial(2k, k-1)/4^k = ((n+3)^2)*C(n+2)/2-2^(2*n+3), C = Catalan. Also a(n+1)=4*a(n)+binomial(2(n+2), n+1).
G.f.: (d/dx)c(x)/(1-4*x), where c(x) = g.f. for Catalan numbers; convolution of A001791 and powers of 4. G.f. also c(x)^2/(1-4*x)^(3/2); convolution of Catalan numbers A000108 C(n), n >= 1, with A002457; convolution of A008549(n), n >= 1, with A000984 (central binomial coefficients).
a(n) = Sum_{k=0..n+1} A039598(n+1,k)*k^2. - Philippe Deléham, Dec 16 2007

A050144 T(n,k) = M(2n-1,n-1,k-1), 0 <= k <= n, n >= 0, where M(p,q,r) is the number of upright paths from (0,0) to (p,p-q) that meet the line y = x+r and do not rise above it.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 2, 3, 4, 1, 5, 9, 14, 6, 1, 14, 28, 48, 27, 8, 1, 42, 90, 165, 110, 44, 10, 1, 132, 297, 572, 429, 208, 65, 12, 1, 429, 1001, 2002, 1638, 910, 350, 90, 14, 1, 1430, 3432, 7072, 6188, 3808, 1700, 544, 119, 16, 1
Offset: 0

Views

Author

Keywords

Comments

Let V=(e(1),...,e(n)) consist of q 1's and p-q 0's; let V(h)=(e(1),...,e(h)) and m(h)=(#1's in V(h))-(#0's in V(h)) for h=1,...,n. Then M(p,q,r)=number of V having r=max{m(h)}.
The interpretation of T(n,k) as RU walks in terms of M(.,.,.) in the NAME is erroneous. There seems to be a pattern along subdiagonals:
M(3,1,1) = 4 = T(3,2); M(3,1,2) = 1 = T(4,4); M(5,2,1) = 20 = T(5,3); M(5,2,2) = 7 = T(6,5); M(5,2,3) = 1 = T(7,7); M(7,3,0) = 165 = T(6,2); M(7,3,1) = 110 = T(7,4); M(7,3,2) = 44 = T(8,6); M(7,3,3) = 10 = T(9,8); M(7,3,4) = 1 = T(10,10); M(9,4,0) = 1001 = T(8,3); M(9,4,1) = 637 = T(9,5); M(9,4,2) = 273 = T(10,7); M(9,4,3) = 77 = T(11,9); M(9,4,4) = 13 = T(12,11); M(9,4,5) = 1 = T(13,13); M(11,5,0) = 6188 = T(10,4); M(11,5,1) = 3808 = T(11,6); M(11,5,2) = 1700 = T(12,8); M(11,5,3) = 544 = T(13,...); M(11,5,4) = 119; M(11,5,5) = 16; M(11,5,6) = 1; M(13,6,0) = 38760 = T(12,5); M(13,6,1) = 23256 = T(13,7); M(13,6,2) = 10659 = T(14,9); - R. J. Mathar, Jul 31 2024

Examples

			Triangle begins:
     0
     1    0
     1    1    1
     2    3    4    1
     5    9   14    6    1
    14   28   48   27    8    1
    42   90  165  110   44   10    1
   132  297  572  429  208   65   12    1
   429 1001 2002 1638  910  350   90   14    1
  1430 3432 7072 6188 3808 1700  544  119   16    1
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

{M(2n, 0, k)} is given by A039599. {M(2n+1, n+1, k+1)} is given by A039598.
Cf. A033184, A050153, A000108 (column 0), A000245 (column 1), A002057 (column 2), A000344 (column 3), A003517 (column 4), A000588 (column 5), A003518 (column 6), A001392 (column 7), A003519 (column 8), A000589 (column 9), A090749 (column 10).

Programs

  • Maple
    A050144 := proc(n,k)
        if n < k then
            0;
        elif k =0 then
            if n =0 then
                0 ;
            else
                A000108(n-1) ;
            end if;
        elif k = 1 then
            add( procname(n-1-j,0)*A000108(j+1),j=0..n-1) ;
        elif k = 2 then
            add( procname(n-j,1)*A000108(j),j=0..n) ;
        else
            add( procname(n-1-j,k-1)*A000108(j),j=0..n-1) ;
        end if;
    end proc:
    seq(seq( A050144(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 30 2024
  • Mathematica
    c[n_] := Binomial[2 n, n]/(n + 1);
    t[n_, k_] := Which[k == 0, c[n - 1],
      k == 1, Sum[t[n - 1 - j, 0]*c[j + 1], {j, 0, n - 2}],
      k == 2, Sum[t[n - j, 1]*c[j], {j, 0, n - 1}],
      k > 2, Sum[t[n - 1 - j, k - 1] c[j + 1], {j, 0, n - 2}]]
    t[0, 0] = 0;
    Column[Table[t[n, k], {n, 0, 10}, {k, 0, n}]]
    (* Clark Kimberling, Jul 30 2024 *)

Formula

For n > 0: Sum_{k>=0} T(n, k) = binomial(2*n-1, n); see A001700. - Philippe Deléham, Feb 13 2004 [Erroneous sum-formula deleted. R. J. Mathar, Jul 31 2024]
T(n, k)=0 if n < k; T(0, 0)=0, T(n, 0) = A000108(n-1) for n > 0; T(n, 1) = Sum_{j>=0} T(n-1-j, 0)*A000108(j+1); T(n, 2) = Sum_{j>=0} T(n-j, 1)*A000108(j); for k > 2, T(n, k) = Sum_{j>=0} T(n-1-j, k-1)*A000108(j+1). - Philippe Deléham, Feb 13 2004 [Corrected by Sean A. Irvine, Aug 08 2021]
For the column k=0, g.f.: x*C(x); for the column k=1, g.f.: x*C(x)*(C(x)-1); for the column k, k > 1, g.f.: x*C(x)^2*(C(x)-1)^(k-1); where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 13 2004
T(n,0) = A033184(n,2). T(n,1) = A033184(n+1,3), T(n,k) = A033184(n+2,k+2) for k>=2. - R. J. Mathar, Jul 31 2024

A050166 Triangle T(n,k) = M(2n,k,-1), with 0 <= k <= n, n >= 0, and array M is defined in A050144.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 14, 14, 1, 8, 27, 48, 42, 1, 10, 44, 110, 165, 132, 1, 12, 65, 208, 429, 572, 429, 1, 14, 90, 350, 910, 1638, 2002, 1430, 1, 16, 119, 544, 1700, 3808, 6188, 7072, 4862, 1, 18, 152, 798, 2907, 7752, 15504, 23256, 25194, 16796
Offset: 0

Views

Author

Keywords

Comments

Sometimes called Catalan's triangle, although this term is usually reserved for several other triangles!
T is a mirror image of the array in A039598.
Given (1) = row 0, then the sum of terms with alternating signs in row r of A050166 = (-1)^r * A000108(n); where A000108 = 1, 1, 2, 5, 14, 42, ...the Catalan numbers. - Herb Conn
The diagonals of this triangle are self-convolutions of the main diagonal A000108(n+1): 1, 2, 5, 14, 42, 132, 429, ... - Philippe Deléham, May 25 2005
The multiplicities of the eigenvalues of the middle cubes are related to this triangle. The middle cube in Q_3 has eigenvalues -2, -1, 1, 2 with multiplicities 1, 2, 2, 1. The middle cube in Q_5 has eigenvalues -3, -2, -1, 1, 2, 3 with multiplicities 1, 4, 5, 5, 4, 1. The middle cube in Q_7 has eigenvalues -4, -3, -2, -1, 1, 2, 3, 4 with multiplicities 1, 6, 14, 14, 14, 14, 6, 1, etc. - Ke Qiu, Apr 05 2019

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,  5;
  1,  6, 14, 14;
  1,  8, 27, 48, 42;
  ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Y. Jiang, K. Qiu, R. Qiu, and J. Shen, On the spectrum of the middle-cube, Congressus Numerantium, 195 (2009), 195-204.
  • A. Nkwanta, Lattice paths and RNA secondary structures, in: Nathaniel Dean, African Americans in Mathematics, AMS and DIMACS, 1997, ISBN 978-0-8218-0678-4, pp. 137-147.

Crossrefs

Mirror image of A039598.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 2*(n-k+1)* Binomial(2*n+1, k)/(2*n-k+2) ))); # G. C. Greubel, Apr 05 2019
  • Magma
    [[2*(n-k+1)*Binomial(2*n+1,k)/(2*n-k+2): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
    
  • Mathematica
    Table[2*Binomial[2n+1, k]*(n-k+1)/(2*n-k+2), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
  • PARI
    {T(n,k) = 2*(n-k+1)*binomial(2*n+1,k)/(2*n-k+2)}; \\ G. C. Greubel, Apr 05 2019
    
  • Sage
    [[2*(n-k+1)*binomial(2*n+1,k)/(2*n-k+2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019
    

Formula

From Henry Bottomley, Sep 24 2001: (Start)
T(n, k) = C(2n+1, k)*2*(n-k+1)/(2n-k+2) = A039598(n, n-k)
T(n, k) = T(n-1, k) + 2*T(n-1, k-1) + T(n-1, k-2), with T(0, 0) = 1 and T(n, k) = 0 if n < 0 or n < k. (End)
Sum_{0<=k<=n} T(n,k)*x^k = A000012(n), A001700(n), A194723(n+1), A194724(n+1), A194725(n+1), A194726(n+1), A195727(n+1), A194728(n+1), A194729(n+1), A194730(n+1) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Nov 03 2011

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2001

A128899 Riordan array (1,(1-2x-sqrt(1-4x))/(2x)).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 4, 1, 0, 14, 14, 6, 1, 0, 42, 48, 27, 8, 1, 0, 132, 165, 110, 44, 10, 1, 0, 429, 572, 429, 208, 65, 12, 1, 0, 1430, 2002, 1638, 910, 350, 90, 14, 1, 0, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1, 0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 21 2007

Keywords

Comments

Let the sequence A(n) = [0/1, 2/1, 1/2, 3/2, 2/3, 4/3, ...] defined by a(2n)=n/(n+1) and a(2n+1)=(n+2)/(n+1). T(n,k) is the triangle read by rows given by A(n) DELTA A000007 where DELTA is the operator defined in A084938.
T is the convolution triangle of the Catalan numbers (see A357368). - Peter Luschny, Oct 19 2022

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,     5,     4,     1;
  0,    14,    14,     6,     1;
  0,    42,    48,    27,     8,    1;
  0,   132,   165,   110,    44,   10,    1;
  0,   429,   572,   429,   208,   65,   12,  1;
  0,  1430,  2002,  1638,   910,  350,   90,  14,   1;
  0,  4862,  7072,  6188,  3808, 1700,  544, 119,  16,  1;
  0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1;
  ...
		

Crossrefs

Row sums give A088218.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> binomial(2*n,n)/(n+1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, n_] := 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n - 1, k - 1] + 2 T[n - 1, k] + T[n - 1, k + 1]; T[, ] = 0;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 14 2019 *)
  • PARI
    T(n, k) = binomial(2*n-2, n-k)-binomial(2*n-2, n-k-2); \\ Seiichi Manyama, Mar 24 2025
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(catalan_number(i)*T(k-1,n-i) for i in (1..n-k+1))
    A128899 = lambda n,k: T(k,n)
    for n in (0..10): print([A128899(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
    

Formula

T(n,k) = A039598(n-1,k-1) for n >= 1, k >= 1; T(n,0)=0^n.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k >= 1, T(n,0)=0^n, T(n,k)=0 if k > n.
T(n,k) + T(n,k+1) = A039599(n,k). - Philippe Deléham, Sep 12 2007

Extensions

Typo in data corrected by Jean-François Alcover, Jun 14 2019
Previous Showing 41-50 of 67 results. Next