cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A039652 Becomes prime after n iterations of f(x) = phi(x)+1 (least inverse of A039651).

Original entry on oeis.org

2, 1, 15, 35, 69, 255, 535, 949, 1957, 2513, 2923, 4531, 17701, 22957, 54589, 79421, 80029, 84493, 98581, 102827, 115243, 239111, 291149, 310813, 362621, 398893, 598341, 801923, 838307, 1063493, 1079833, 1123813, 1311121, 1329403, 1582439
Offset: 0

Views

Author

Keywords

Comments

Of the terms n <= 66, all are semiprimes except those for n = 0, 1, 5, and 19. Why? - T. D. Noe, Oct 17 2013

Crossrefs

Programs

  • Mathematica
    nn = 34; t = Table[0, {nn}]; found = 0; n = 0; While[found < nn, n++; len = Length[NestWhileList[EulerPhi[#] + 1 &, n, UnsameQ, All]] - 2; If[len <= nn && t[[len]] == 0, t[[len]] = n; found++]]; t = Join[{2}, t] (* T. D. Noe, Oct 17 2013 *)

A186975 Irregular triangle T(n,k), n>=1, 1<=k<=A186971(n), read by rows: T(n,k) is the number of subsets of {1, 2, ..., n} containing n and having <=k pairwise coprime elements.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 3, 4, 1, 5, 10, 12, 1, 3, 4, 1, 7, 18, 26, 28, 1, 5, 11, 15, 16, 1, 7, 19, 29, 32, 1, 5, 10, 12, 1, 11, 42, 84, 110, 116, 1, 5, 11, 15, 16, 1, 13, 58, 137, 209, 242, 248, 1, 7, 21, 37, 46, 48, 1, 9, 30, 55, 69, 72, 1, 9, 33, 69, 98, 110, 112
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2011

Keywords

Comments

T(n,k) = T(n,k-1) for k>A186971(n). The triangle contains all values of T up to the last element of each row that is different from its predecessor.

Examples

			T(5,3) = 10 because there are 10 subsets of {1,2,3,4,5} containing n and having <=3 pairwise coprime elements: {5}, {1,5}, {2,5}, {3,5}, {4,5}, {1,2,5}, {1,3,5}, {1,4,5}, {2,3,5}, {3,4,5}.
Triangle T(n,k) begins:
  1;
  1, 2;
  1, 3, 4;
  1, 3, 4;
  1, 5, 10, 12;
  1, 3, 4;
  1, 7, 18, 26, 28;
		

Crossrefs

Columns k=1-9 give: A000012, A039649 for n>1, A186987, A186988, A186989, A186990, A186991, A186992, A186993.
Rightmost elements of rows give A186973.

Programs

  • Maple
    with(numtheory):
    s:= proc(m,r) option remember; mul(`if`(in then 0
        elif k=1 then 1
        elif k=2 and t=n then `if`(n<2, 0, phi(n))
        else c:= 0;
             d:= 2-irem(t, 2);
             for h from 1 to n-1 by d do
               if igcd(t, h)=1 then c:= c +b(s(t*h, h), h, k-1) fi
             od; c
          fi
        end:
    T:= proc(n, k) option remember;
           b(s(n, n), n, k) +`if`(k=0, 0, T(n, k-1))
        end:
    seq(seq(T(n, k), k=1..a(n)), n=1..20);
  • Mathematica
    s[m_, r_] := s[m, r] = Product[If[i < r, i, 1], {i, FactorInteger[m][[All, 1]]}]; a[n_] := a[n] = If[n < 4, n, PrimePi[n]-Length[FactorInteger[n]]+2]; b[t_, n_, k_] := b[t, n, k] = Module[{c, d, h}, Which[k == 0 || k > n, 0, k == 1, 1, k == 2 && t == n, If[n < 2, 0, EulerPhi[n]], True, c = 0; d = 2-Mod[t, 2]; For[h = 1, h <= n-1, h = h+d, If[GCD[t, h] == 1, c = c+b[s[t*h, h], h, k-1] ] ]; c ] ]; t[n_, k_] := t[n, k] = b[s[n, n], n, k]+If[k == 0, 0, t[n, k-1]]; Table[Table[t[n, k], {k, 1, a[n]}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)

Formula

T(n,k) = Sum_{i=1..k} A186972(n,i).

A039656 Becomes prime after n iterations of f(x) = sigma(x)-1 (least inverse of A039655).

Original entry on oeis.org

2, 6, 4, 27, 12, 9, 121, 301, 930, 484, 578, 441, 1273, 468, 4863, 3171, 9216, 8373, 19692, 19416, 25442, 13440, 19230, 16641, 16804, 83161, 100652, 226181, 203400, 133200, 419248, 380979, 744796, 553296, 634710, 539476, 505584, 674416, 634206
Offset: 0

Views

Author

Keywords

Comments

Records: 2, 6, 27, 121, 301, 930, 1273, 4863, 9216, 19692, 25442, 83161, 100652, 226181, 419248, 744796, 3739690, 4238314, etc. - Robert G. Wilson v, Sep 23 2017
Indices of records: 0, 1, 3, 6, 7, 8, 12, 14, 16, 18, 20, 25, 26, 27, 30, 32, 46, 47, 48, 49, 50, 56, 57, 58, 59, 61, 63, 65, 67, 76, 77, 78, 82, 83, 84, 85, etc. - Robert G. Wilson v, Sep 23 2017
Checked through a(138)=60780636903. - Hugo Pfoertner, Nov 15 2017

Crossrefs

Programs

A296078 Least number with the same prime signature as 1+phi(n), where phi = A000010, Euler totient function.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 4, 6, 2, 2, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 6, 4, 2, 2, 2, 2, 6, 6, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 6, 4, 6, 2, 6, 12, 4, 2, 4, 2, 2, 2, 2, 2, 4, 2, 6, 6, 2, 2, 4, 6, 2, 6, 2, 2, 4, 2, 12, 2, 2, 2, 6, 2, 2, 2, 2, 2, 6, 2, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Crossrefs

Cf. A039698 (positions of 2's).

Programs

  • Mathematica
    f[n_] := Block[{ps = Last@# & /@ FactorInteger[1 + EulerPhi@n]}, Times @@ ((Prime@ Range@ Length@ ps)^ps)]; Array[f, 105] (* Robert G. Wilson v, Dec 11 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));

Formula

a(n) = A046523(A039649(n)) = A046523(1+A000010(n)).

A138537 Primes p_n for which A140141(n) = 2p_n, where p_n = n-th prime (A000040).

Original entry on oeis.org

11, 23, 29, 31, 47, 53, 59, 67, 71, 79, 83, 103, 107, 127, 131, 137, 139, 149, 151, 167, 173, 179, 191, 197, 199, 211, 223, 227, 229, 239, 251, 263, 269, 271, 283, 293, 307, 311, 317, 331, 347, 359, 367, 373, 379, 383, 389, 419, 431, 439, 443, 463, 467, 479
Offset: 1

Views

Author

Vladimir Shevelev, May 10 2008

Keywords

Comments

Perhaps the same as A058340, but need proof. - Ray Chandler, May 20 2008
The first member of this sequence not in A058340 is 295937. - Robert Israel, Aug 12 2016

Crossrefs

Programs

  • Maple
    filter:= n -> isprime(n) and numtheory:-invphi(numtheory:-phi(n))[2] = 2*n:
    select(filter, [seq(i,i=2..1000)]); # Robert Israel, Aug 12 2016

Extensions

Corrected and extended by Ray Chandler, May 20 2008

A296079 a(n) = 1 if 1+phi(n) is prime, 0 otherwise, where phi = A000010, Euler totient function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Comments

Out of the first 65537 values, 26197 are 1's (indicating primes), and 39340 are 0's, indicating nonprimes.

Crossrefs

Characteristic function of A039698.
Cf. A039689 (positions of zeros).
Cf. also A296077, A296078, A296080.

Programs

  • Mathematica
    Table[If[PrimeQ[EulerPhi[n]+1],1,0],{n,120}] (* Harvey P. Dale, Apr 23 2020 *)
  • PARI
    A296079(n) = isprime(1+eulerphi(n));

Formula

a(n) = A010051(A039649(n)) = A010051(1+A000010(n)).
For all n, a(n) >= A010051(n) and a(2n) >= A010051(n).

A175177 Conjectured number of numbers for which the iteration x -> phi(x) + 1 terminates at prime(n). Cardinality of rooted tree T_p (where p is n-th prime) in Karpenko's book.

Original entry on oeis.org

2, 3, 4, 9, 2, 31, 6, 4, 2, 2, 2, 11, 24, 41, 2, 2, 2, 57, 2, 2, 58, 2, 2, 6, 17, 4, 2, 2, 39, 67, 2, 2, 2, 2, 2, 2, 25, 4, 2, 2, 2, 158, 2, 61, 2, 2, 2, 2, 2, 2, 54, 2, 186, 2, 10, 2, 2, 2, 18, 8, 2, 2, 2, 2, 96, 2, 2, 18, 2, 6, 15, 2, 2, 2, 2, 2, 2, 44, 34, 6, 2, 16, 2, 105, 2, 2, 60, 5, 4, 2, 2, 2, 4
Offset: 1

Views

Author

Artur Jasinski, Mar 01 2010

Keywords

Examples

			a(3) = 4 because x = { 5, 8, 10, 12 } are the 4 numbers from which the iteration x -> phi(x) + 1 terminates at prime(3) = 5.
a(4) = 8 because x = { 7, 9, 14, 15, 16, 18, 20, 24, 30 } are the 9 numbers from which the iteration x -> phi(x) + 1 terminates at prime(4) = 7.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Third Edition, Springer, New York 2004. Chapter B41, Iterations of phi and sigma, page 148.
  • A. S. Karpenko, Lukasiewicz's Logics and Prime Numbers, (English translation), 2006. See Table 2 on p.125 ff.
  • A. S. Karpenko, Lukasiewicz's Logics and Prime Numbers, (Russian), 2000.

Crossrefs

Programs

  • PARI
    iterat(x) = {my(k,s); if ( isprime(x),return(x)); s=x;
    for (k=1,1000000000,s=eulerphi(s)+1;if(isprime(s),return(s)));
    return(s); }
    check(y,endrange) = {my(count,start); count=0;
    for(start=1,endrange,if(iterat(start)==y,count++;));
    return(count); }
    for (n=1,93,x=prime(n);print1(check(x,1000000),", "))
    \\ Hugo Pfoertner, Sep 23 2017

Extensions

Name clarified by Hugo Pfoertner, Sep 23 2017

A221740 a(n) = -4*((n-1)*(n+1)^(n+1)+1)/(((-1)^n-3)*n^3).

Original entry on oeis.org

1, 7, 19, 293, 1493, 38127, 293479, 10593529, 109739369, 5135610071, 66987982331, 3856048810781, 60693710471869, 4149140360751583, 76519827268721103, 6058888636862818097, 128138108936443028945, 11533996620790579909159
Offset: 1

Views

Author

Keywords

Comments

Per exhaustive program, written for bases from 2 to 10, the number of permutations pairs, which have the same ratio, equal to A221740(n)/A221741(n) = (n^2*(n+1)^n - (n+1)^n + 1) / (-n^2 + n*(n+1)^n + (n+1)^n - n - 1), is: {2,2,3,3,5,3,7,5,7,...} for n >= 1 where n = r-1 and r is the base radix. Judging by above sequence it appears that the number of such permutations pairs is related to phi, which is the Euler totient function - according to A039649, A039650, A214288 (see bullet 1 of the analysis in the answer section of the Mathematics StackExchange link). - Alexander R. Povolotsky, Jan 26 2013

Crossrefs

Programs

  • Mathematica
    Table[-4*((n - 1)*(n + 1)^(n + 1) + 1)/(((-1)^n - 3)*n^3), {n,1,50}] (* G. C. Greubel, Feb 19 2017 *)
  • Maxima
    makelist(-4*((n-1)*(n+1)^(n+1)+1)/(((-1)^n-3)*n^3),n,1,20); /* Martin Ettl, Jan 25 2013 */
    
  • PARI
    for(n=1,25, print1(-4*((n - 1)*(n + 1)^(n + 1) + 1)/(((-1)^n - 3)*n^3), ", ")) \\ G. C. Greubel, Feb 19 2017

Formula

a(n) = -4*A051846(n)/((-3 + (-1)^n)*n).
From Alexander R. Povolotsky, Oct 12 2022: (Start)
floor(a(n+1)/A221741(n+1)) = n.
Limit_{n->oo} (a(n)/A221741(n) - floor(a(n)/A221741(n))) = 0. (End)

A221741 a(n) = -4*(((n+1)^(n+1)-(n+1))/((n+1)-1)^2-1)/((-3+(-1)^n)*n).

Original entry on oeis.org

1, 5, 9, 97, 373, 7625, 48913, 1513361, 13717421, 570623341, 6698798233, 350549891889, 5057809205989, 319164643134737, 5465701947765793, 403925909124187873, 8008631808527689309, 678470389458269406421, 15287592943577781017641
Offset: 1

Views

Author

Keywords

Comments

Per exhaustive program, written for bases from 2 to 10, the number of permutations pairs, which have the same ratio, equal to A221740(n)/a(n) = (n^2 (n+1)^n-(n+1)^n+1) / (-n^2+n (n+1)^n+(n+1)^n-n-1), is: {2,2,3,3,5,3,7,5,7,...} for n>=1 where n=r-1 and r is the base radix. Judging by above sequence it appears that the number of such permutations pairs is related to phi, which is the Euler totient function - according to A039649, A039650, A214288 (see bullet 1 of the analysis in the answer section of the StackExchange link). Alexander R. Povolotsky, Jan 26 2013

Crossrefs

Programs

  • Mathematica
    Table[-4*(((n + 1)^(n + 1) - (n + 1))/((n + 1) - 1)^2 - 1)/((-3 + (-1)^n)*n), {n,1,50}] (* G. C. Greubel, Feb 19 2017 *)
  • Maxima
    makelist(-4*(((n+1)^(n+1)-(n+1))/((n+1)-1)^2-1)/((-3+(-1)^n)*n), n, 1, 20); /* Martin Ettl, Jan 25 2013 */
    
  • PARI
    for(n=1,25, print1(-4*(((n + 1)^(n + 1) - (n + 1))/((n + 1) - 1)^2 - 1)/((-3 + (-1)^n)*n), ", ")) \\ G. C. Greubel, Feb 19 2017

Formula

a(n) = -4*A023811(n+1)/((-3 + (-1)^n)*n).

A263027 a(n) = A002322(n) + 1, where A002322 is Carmichael lambda.

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 7, 3, 7, 5, 11, 3, 13, 7, 5, 5, 17, 7, 19, 5, 7, 11, 23, 3, 21, 13, 19, 7, 29, 5, 31, 9, 11, 17, 13, 7, 37, 19, 13, 5, 41, 7, 43, 11, 13, 23, 47, 5, 43, 21, 17, 13, 53, 19, 21, 7, 19, 29, 59, 5, 61, 31, 7, 17, 13, 11, 67, 17, 23, 13, 71, 7
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2015

Keywords

Comments

The function t(k,n) = A002322(n)+k provides many prime values for k=1: for n up to 1000, for example, it returns 798 primes (with repetitions). On the other hand, for n <= 1000 and odd k from 3 to 11, t(k,n) gives 247, 387, 538, 231, 504 prime values, respectively.
Another function of this type is |A002322(n)-119|, which provides 693 prime values for n <= 1000. [Bruno Berselli, Oct 14 2015]

Crossrefs

Cf. A002322.
Cf. A263028: indices n for which a(n) is prime.
Cf. A263029: indices n for which a(n) is composite.
Cf. also A039649, A296076, A296077.

Programs

  • Magma
    [2] cat [CarmichaelLambda(n)+1: n in [2..100]];
    
  • Mathematica
    Table[CarmichaelLambda[n] + 1, {n, 1, 100}]
  • PARI
    vector(100, n, 1 + lcm(znstar(n)[2])) \\ Altug Alkan, Oct 08 2015

Extensions

Edited by Bruno Berselli, Oct 14 2015
Previous Showing 11-20 of 33 results. Next