cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A127343 Product of 11 consecutive primes.

Original entry on oeis.org

200560490130, 3710369067405, 50708377254535, 436092044389001, 2928046583754721, 14107860812636383, 64027983688118969, 229747470880897477, 810162134158954261, 2500935283708076197
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) is the absolute value of the coefficient of x^0 of the polynomial Product_{j=0..10} (x-prime(n+j)) of degree 11; the roots of this polynomial are prime(n), ..., prime(n+10).

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..10] ]: n in [1..50] ]; // Vincenzo Librandi, Apr 03 2011
  • Mathematica
    a = {}; Do[AppendTo[a, Product[Prime[x + n], {n, 0, 10}]], {x, 1, 50}]; a
    Times@@@Partition[Prime[Range[50]],11,1] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    {m=10;k=11;for(n=0,m-1,print1(a=prod(j=1,k,prime(n+j)),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=10;k=11;for(n=1,m,print1(abs(polcoeff(prod(j=0,k-1,(x-prime(n+j))),0)),","))} \\ Klaus Brockhaus, Jan 21 2007
    

Extensions

Edited by Klaus Brockhaus, Jan 21 2007

A096334 Triangle read by rows: T(n,k) = prime(n)#/prime(k)#, 0<=k<=n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 30, 15, 5, 1, 210, 105, 35, 7, 1, 2310, 1155, 385, 77, 11, 1, 30030, 15015, 5005, 1001, 143, 13, 1, 510510, 255255, 85085, 17017, 2431, 221, 17, 1, 9699690, 4849845, 1616615, 323323, 46189, 4199, 323, 19, 1, 223092870, 111546435, 37182145, 7436429, 1062347, 96577, 7429, 437, 23, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 03 2004

Keywords

Comments

T(n,k) is the (k+1)-th product of (n-k) successive primes (k, n-(k+1) >= 0). - Alois P. Heinz, Jan 21 2022

Examples

			Triangle begins:
    1;
    2,   1;
    6,   3,  1;
   30,  15,  5, 1;
  210, 105, 35, 7, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A002110, A070826.
T(2n,n) gives A107712.
Row sums give A350895.
Antidiagonal sums give A350758.
Cf. A073485 (distinct values sorted).

Programs

  • Maple
    T:= proc(n, k) option remember;
         `if`(n=k, 1, T(n-1, k)*ithprime(n))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    T[n_, k_] := Times @@ Prime[Range[k + 1, n]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 13 2021 *)
  • PARI
    pr(n) = factorback(primes(n)); \\ A002110
    row(n) = my(P=pr(n)); vector(n+1, k, P/pr(k-1)); \\ Michel Marcus, Jan 21 2022

Formula

T(n,0) = A002110(n); T(n,n) = 1;
T(n,n-1) = A000040(n) for n>0;
T(n,k) = A002110(n)/A002110(k), 0<=k<=n.
T(n,k) = Product_{j=k+1..n} prime(j). - Alois P. Heinz, Jan 21 2022

A098012 Triangle read by rows in which the k-th term in row n (n >= 1, k = 1..n) is Product_{i=0..k-1} prime(n-i).

Original entry on oeis.org

2, 3, 6, 5, 15, 30, 7, 35, 105, 210, 11, 77, 385, 1155, 2310, 13, 143, 1001, 5005, 15015, 30030, 17, 221, 2431, 17017, 85085, 255255, 510510, 19, 323, 4199, 46189, 323323, 1616615, 4849845, 9699690, 23, 437, 7429, 96577, 1062347, 7436429, 37182145, 111546435, 223092870
Offset: 1

Views

Author

Alford Arnold, Sep 09 2004

Keywords

Comments

Also, square array A(m,n) in which row m lists all products of m consecutive primes (read by falling antidiagonals). See also A248164. - M. F. Hasler, May 03 2017

Examples

			2
3 3*2
5 5*3 5*3*2
7 7*5 7*5*3 7*5*3*2
Or, as an infinite square array:
     2     3     5     7  ... : row 1 = A000040,
     6    15    35    77  ... : row 2 = A006094,
    30   105   385  1001  ... : row 3 = A046301,
   210  1155  5005 17017  ... : row 4 = A046302,
   ..., with col.1 = A002110, col.2 = A070826, col.3 = A059865\{1}. - _M. F. Hasler_, May 03 2017
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..200],IsPrime);;
    T:=Flat(List([1..9],n->List([1..n],k->Product([0..k-1],i->P[n-i])))); # Muniru A Asiru, Mar 16 2019
  • Haskell
    a098012 n k = a098012_tabl !! (n-1) !! (k-1)
    a098012_row n = a098012_tabl !! (n-1)
    a098012_tabl = map (scanl1 (*)) a104887_tabl
    -- Reinhard Zumkeller, Oct 02 2014
    
  • Maple
    T:=(n,k)->mul(ithprime(n-i),i=0..k-1): seq(seq(T(n,k),k=1..n),n=1..9); # Muniru A Asiru, Mar 16 2019
  • Mathematica
    Flatten[ Table[ Product[ Prime[i], {i, n, j, -1}], {n, 9}, {j, n, 1, -1}]] (* Robert G. Wilson v, Sep 21 2004 *)
  • PARI
    T098012(n,k)=prod(i=0,k-1,prime(n-i)) \\ "Triangle" variant
    A098012(m,n)=prod(i=0,m-1,prime(n+i)) \\ "Square array" variant. - M. F. Hasler, May 03 2017
    

Formula

n-th row = partial products of row n in A104887. - Reinhard Zumkeller, Oct 02 2014

Extensions

More terms from Robert G. Wilson v, Sep 21 2004

A127342 Product of 10 consecutive primes.

Original entry on oeis.org

6469693230, 100280245065, 1236789689135, 10141675450907, 62298863484143, 266186053068611, 1085220062510491, 3766351981654057, 12091972151626183, 35224440615606707, 86239147714071593, 203079283326684719
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) = coefficient of x^0 of the polynomial Product_{j=0..9} (x-prime(n+j)) of degree 10; the roots of this polynomial are prime(n), ..., prime(n+9).

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..9] ]: n in [1..50] ]; // Vincenzo Librandi, Apr 03 2011
  • Mathematica
    a = {}; Do[AppendTo[a, Product[Prime[x + n], {n, 0, 9}]], {x, 1, 50}]; a
    Times@@@Partition[Prime[Range[50]],10,1] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    {m=12;k=10;for(n=0,m-1,print1(a=prod(j=1,k,prime(n+j)),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=12;k=10;for(n=1,m,print1(polcoeff(prod(j=0,k-1,(x-prime(n+j))),0),","))} \\ Klaus Brockhaus, Jan 21 2007
    

Extensions

Edited by Klaus Brockhaus, Jan 21 2007

A175742 Numbers with 32 divisors.

Original entry on oeis.org

840, 1080, 1320, 1512, 1560, 1848, 1890, 1920, 2040, 2184, 2280, 2310, 2376, 2688, 2730, 2760, 2808, 2856, 2970, 3000, 3080, 3192, 3432, 3456, 3480, 3510, 3570, 3640, 3672, 3720, 3864, 3990, 4104, 4158, 4224, 4290, 4440, 4480, 4488, 4590, 4760, 4830, 4872
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the form p^31, p^15*q^1, p^7*q^3, p^7*q^1*r^1, p^3*q^3*r^1, p^3*q^1*r^1*s^1 and p^1*q^1*r^1*s^1*t^1, where p, q, r, s and t are distinct primes.

Crossrefs

Cf. A046303 (a subsequence). - Michel Marcus, Apr 06 2017

Programs

Formula

A000005(a(n))=32.

Extensions

Extended by T. D. Noe, May 09 2011

A127344 Product of 12 consecutive primes.

Original entry on oeis.org

7420738134810, 152125131763605, 2180460221945005, 20496326086283047, 155186468939000213, 832363787945546597, 3905707004975257109, 15393080549020130959, 57521511525285752531, 182568275710689562381, 497341164867050876831, 1331590860773071702483
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) = coefficient of x^0 of the polynomial Prod_{j=0,11}(x-prime(n+j)) of degree 12; the roots of this polynomial are prime(n), ..., prime(n+11).

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..11] ]: n in [1..50] ]; // Vincenzo Librandi, Apr 03 2011
  • Maple
    A127344 := proc(n) mul(ithprime(n+k),k=0..11) ; end proc: # R. J. Mathar, Apr 05 2011
  • Mathematica
    a = {}; Do[AppendTo[a, Product[Prime[x + n], {n, 0, 11}]], {x, 1, 50}]; a
    Times@@@Partition[Prime[Range[50]],12,1] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    {m=10;k=12;for(n=0,m-1,print1(a=prod(j=1,k,prime(n+j)),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=10;k=12;for(n=1,m,print1(polcoeff(prod(j=0,k-1,(x-prime(n+j))),0),","))} \\ Klaus Brockhaus, Jan 21 2007
    

Extensions

Edited by Klaus Brockhaus, Jan 21 2007

A127491 Primes which are half of the absolute coefficients [x^2] of the 5th-order polynomials with prime roots as defined in A127489.

Original entry on oeis.org

310733, 426871, 15722159, 166492163, 177861107, 270396557, 342955763, 406947461, 1606837039, 1908243773, 2902193117, 3386269021, 5441167877, 6953015807, 7671152921, 10005413687, 10979785673, 14774655421, 16546239937
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2007

Keywords

Comments

The polynomials are of the form (x-prime(i))*(x-prime(i+1))*..*(x-prime(i+4)). The quadratic terms have coefficients which are of the form -sum_{j

Examples

			The first contribution is from the 11th polynomial, (x-prime(11)) *(x-prime(12)) *(x-prime(13)) *(x-prime(14)) *(x-prime(15)) = x^5 -199x^4 +15766x^3 -621466x^2 +12185065x -95041567,
where the coefficient of [x^2] is -621466. Its sign-reversed half is 310733, a prime.
		

Programs

  • Maple
    isA127491 := proc(k)
        local x,j,p ;
        mul( x-ithprime(k+j),j=0..4) ;
        expand(%) ;
        abs(coeff(%,x,2)/2) ;
        isprime(%)
    end proc:
    A127491k := proc(n)
        option remember ;
        if n = 0 then
            0;
        else
            for k from procname(n-1)+1 do
                if isA127491(k) then
                    return k ;
                end if;
            end do:
        end if;
    end proc:
    A127491 := proc(n)
        option remember ;
        local k ;
        k := A127491k(n) ;
        mul( x-ithprime(k+j),j=0..4) ;
        expand(%) ;
        abs(coeff(%,x,2)/2) ;
    end proc:
    seq(A127491(n),n=1..60) ; # R. J. Mathar, Apr 23 2023

Extensions

Entries replaced to comply with the definition. - R. J. Mathar, Sep 26 2011

A127492 Indices m of primes such that Sum_{k=0..2, k

Original entry on oeis.org

2, 10, 17, 49, 71, 72, 75, 145, 161, 167, 170, 184, 244, 250, 257, 266, 267, 282, 286, 301, 307, 325, 343, 391, 405, 429, 450, 537, 556, 561, 584, 685, 710, 743, 790, 835, 861, 904, 928, 953
Offset: 1

Author

Artur Jasinski, Jan 16 2007

Keywords

Comments

Let p_0 .. p_4 be five consecutive primes, starting with the m-th prime. The index m is in the sequence if the absolute value [x^0] of the polynomial (x-p_0)*[(x-p_1)*(x-p_2) + (x-p_2)*(x-p_3) + (x-p_3)*(x-p_4)] + (x-p_1)*[(x-p_2)*(x-p_3) + (x-p_3)*(x-p_4)] + (x-p_2)*(x-p_3)*(x-p_4) is two times a prime. The correspondence with A127491: the coefficient [x^2] of the polynomial (x-p_0)*(x-p_1)*..*(x-p_4) is the sum of 10 products of a set of 3 out of the 5 primes. Here the sum is restricted to the 6 products where the two largest of the 3 primes are consecutive. - R. J. Mathar, Apr 23 2023

Programs

  • Maple
    isA127492 := proc(k)
        local x,j ;
        (x-ithprime(k))* mul( x-ithprime(k+j),j=1..2)
        +(x-ithprime(k))* mul( x-ithprime(k+j),j=2..3)
        +(x-ithprime(k))* mul( x-ithprime(k+j),j=3..4)
        +(x-ithprime(k+1))* mul( x-ithprime(k+j),j=2..3)
        +(x-ithprime(k+1))* mul( x-ithprime(k+j),j=3..4)
        +(x-ithprime(k+2))* mul( x-ithprime(k+j),j=3..4) ;
        p := abs(coeff(expand(%/2),x,0)) ;
        if type(p,'integer') then
            isprime(p) ;
        else
            false ;
        end if ;
    end proc:
    for k from 1 to 900 do
        if isA127492(k) then
            printf("%a,",k) ;
        end if ;
    end do: # R. J. Mathar, Apr 23 2023
  • Mathematica
    a = {}; Do[If[PrimeQ[(Prime[x] Prime[x + 1]Prime[x + 2] + Prime[x] Prime[x + 2]Prime[x + 3] + Prime[x] Prime[x + 3] Prime[x + 4] + Prime[x + 1] Prime[x + 2]Prime[x + 3] + Prime[x + 1] Prime[x + 3]Prime[x + 4] + Prime[x + 2] Prime[x + 3] Prime[x + 4])/2], AppendTo[a, x]], {x, 1, 1000}]; a
    prQ[{a_,b_,c_,d_,e_}]:=PrimeQ[(a b c+a c d+a d e+b c d+b d e+c d e)/2]; PrimePi/@Select[ Partition[ Prime[Range[1000]],5,1],prQ][[;;,1]] (* Harvey P. Dale, Apr 21 2023 *)

Extensions

Definition simplified by R. J. Mathar, Apr 23 2023
Edited by Jon E. Schoenfield, Jul 23 2023

A127493 Indices k such that the coefficient [x^1] of the polynomial Product_{j=0..4} (x-prime(k+j)) is prime.

Original entry on oeis.org

1, 5, 8, 9, 22, 29, 45, 49, 60, 69, 87, 89, 90, 107, 114, 124, 125, 131, 134, 138, 145, 156, 171, 183, 188, 191, 203, 204, 207, 212, 219, 255, 261, 290, 298, 303, 329, 330, 343, 344, 349, 354, 378, 397, 398, 400, 403, 454, 456, 466, 474, 515, 549, 560, 570, 578
Offset: 1

Author

Artur Jasinski, Jan 16 2007

Keywords

Comments

A fifth-order polynomial with 5 roots which are the five consecutive primes from prime(k) onward is defined by Product_{j=0..4} (x-prime(k+j)). The sequence is a catalog of the cases where the coefficient of its linear term is prime.
Indices k such that e4(prime(k), prime(k+1), ..., prime(k+4)) is prime, where e4 is the elementary symmetric polynomial summing all products of four variables. - Charles R Greathouse IV, Jun 15 2015

Examples

			For k=2, the polynomial is (x-3)*(x-5)*(x-7)*(x-11)*(x-13) = x^5-39*x^4+574*x^3-3954*x^2+12673*x-15015, where 12673 is not prime, so k=2 is not in the sequence.
For k=5, the polynomial is x^5-83*x^4+2710*x^3-43490*x^2+342889*x-1062347, where 342889 is prime, so k=5 is in the sequence.
		

Programs

  • Maple
    isA127493 := proc(k)
        local x,j ;
        mul( x-ithprime(k+j),j=0..4) ;
        expand(%) ;
        isprime(coeff(%,x,1)) ;
    end proc:
    A127493 := proc(n)
        option remember ;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA127493(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A127493(n),n=1..60) ; # R. J. Mathar, Apr 23 2023
  • Mathematica
    a = {}; Do[If[PrimeQ[(Prime[x] Prime[x + 1]Prime[x + 2]Prime[x + 3] + Prime[x] Prime[x + 2]Prime[x + 3]Prime[x + 4] + Prime[x] Prime[x + 1]Prime[x + 3]Prime[x + 4] + Prime[x] Prime[x + 1]Prime[x + 2]Prime[x + 4] + Prime[x + 1] Prime[x + 2]Prime[x + 3]Prime[x + 4])], AppendTo[a, x]], {x, 1, 1000}]; a
  • PARI
    e4(v)=sum(i=1,#v-3, v[i]*sum(j=i+1,#v-2, v[j]*sum(k=j+1,#v-1, v[k]*vecsum(v[k+1..#v]))))
    pr(p, n)=my(v=vector(n)); v[1]=p; for(i=2,#v, v[i]=nextprime(v[i-1]+1)); v
    is(n,p=prime(n))=isprime(e4(pr(p,5)))
    v=List(); n=0; forprime(p=2,1e4, if(is(n++,p), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jun 15 2015

Extensions

Definition and comment rephrased and examples added by R. J. Mathar, Oct 01 2009

A261210 a(n) = gpf(1 + Product_{k=0..4} prime(n+k)), where gpf is greatest prime factor and prime(i) is the i-th prime.

Original entry on oeis.org

2311, 1877, 163, 80831, 12647, 6967, 139, 3633983, 1657, 15473, 2970049, 933853, 64776587, 99767, 21067, 84961, 1524137, 820319, 157229, 489427, 2066140207, 71899, 15287, 1680583, 769117, 55732973, 52889, 225941, 4678959379, 1491686591, 87701
Offset: 1

Author

Anders Hellström, Aug 12 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Array[FactorInteger[1 + Product[Prime[# + k], {k, 0, 4}]][[-1, 1]] &, {31}] (* Michael De Vlieger, Aug 19 2015 *)
  • PARI
    gpf(n)=vecmax(factor(n)[, 1]);
    first(m)=vector(m, i, gpf(1+prod(j=0,4,prime(i+j))));

Formula

a(n) = A006530(1+A046303(n)). - Michel Marcus, Aug 13 2015
Previous Showing 11-20 of 21 results. Next