cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A069278 17-almost primes (generalization of semiprimes).

Original entry on oeis.org

131072, 196608, 294912, 327680, 442368, 458752, 491520, 663552, 688128, 720896, 737280, 819200, 851968, 995328, 1032192, 1081344, 1105920, 1114112, 1146880, 1228800, 1245184, 1277952, 1492992, 1507328, 1548288, 1605632, 1622016
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 17 not necessarily distinct primes.
Divisible by exactly 17 prime powers (not including 1).
For n = 1..2628 a(n)=2*A069277(n). - Zak Seidov, Jun 25 2017

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), this sequence (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[2*10^6],PrimeOmega[#]==17&] (* Harvey P. Dale, Sep 28 2016 *)
  • PARI
    k=17; start=2^k; finish=2000000; v=[]
    for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A069278(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,17)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Formula

Product p_i^e_i with Sum e_i = 17.

A069280 19-almost primes (generalization of semiprimes).

Original entry on oeis.org

524288, 786432, 1179648, 1310720, 1769472, 1835008, 1966080, 2654208, 2752512, 2883584, 2949120, 3276800, 3407872, 3981312, 4128768, 4325376, 4423680, 4456448, 4587520, 4915200, 4980736, 5111808, 5971968, 6029312, 6193152
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 19 not necessarily distinct primes.
Divisible by exactly 19 prime powers (not including 1).

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), this sequence (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • PARI
    k=19; start=2^k; finish=8000000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A069280(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,19)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i = 19.

A101695 a(n) = n-th n-almost prime.

Original entry on oeis.org

2, 6, 18, 40, 108, 224, 480, 1296, 2688, 5632, 11520, 25600, 53248, 124416, 258048, 540672, 1105920, 2228224, 4587520, 9830400, 19922944, 40894464, 95551488, 192937984, 396361728, 822083584, 1660944384, 3397386240, 6845104128
Offset: 1

Views

Author

Jonathan Vos Post, Dec 12 2004

Keywords

Comments

A k-almost-prime is a positive integer that has exactly k prime factors, counted with multiplicity.
This is the diagonalization of the set of sequences {j-almost prime(k)}. The cumulative sums of this sequence are in A101696. This is the diagonal just below A078841.

Examples

			a(1) = first 1-almost prime = first prime = A000040(1) = 2.
a(2) = 2nd 2-almost prime = 2nd semiprime = A001358(2) = 6.
a(3) = 3rd 3-almost prime = A014612(3) = 18.
a(4) = 4th 4-almost prime = A014613(4) = 40.
a(5) = 5th 5-almost prime = A014614(5) = 108.
		

Crossrefs

Programs

  • Maple
    A101695 := proc(n)
        local s,a ;
        s := 0 ;
        for a from 2^n do
            if numtheory[bigomega](a) = n then
                s := s+1 ;
                if s = n then
                    return a;
                end if;
            end if;
        end do:
    end proc: # R. J. Mathar, Aug 09 2012
  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n, n]], {n, 30}]; lst (* Robert G. Wilson v, Oct 07 2007 *)
  • Python
    from math import prod, isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A101695(n):
        if n == 1: return 2
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Conjecture: lim_{ n->inf.} a(n+1)/a(n) = 2. - Robert G. Wilson v, Oct 07 2007, Nov 13 2007
Stronger conjecture: a(n)/(n * 2^n) is polylogarithmic in n. That is, there exist real numbers b < c such that (log n)^b < a(n)/(n * 2^n) < (log n)^c for large enough n. Probably b and c can be chosen close to 0. - Charles R Greathouse IV, Aug 28 2012

Extensions

a(21)-a(30) from Robert G. Wilson v, Feb 11 2006
a(12) corrected by N. J. A. Sloane, Nov 23 2007

A091538 Triangle built from m-primes as columns.

Original entry on oeis.org

1, 0, 2, 0, 3, 4, 0, 5, 6, 8, 0, 7, 9, 12, 16, 0, 11, 10, 18, 24, 32, 0, 13, 14, 20, 36, 48, 64, 0, 17, 15, 27, 40, 72, 96, 128, 0, 19, 21, 28, 54, 80, 144, 192, 256, 0, 23, 22, 30, 56, 108, 160, 288, 384, 512, 0, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

m-primes (also called m-almost primes) are the numbers which have precisely m prime factors counting multiple factors. 1 is included as 0-prime.
The number N>=1 appears in column no. m = A001222(N).

Examples

			From _Michael De Vlieger_, May 24 2017: (Start)
Chart a(n,m) read by antidiagonals:
  n | m ->
  ------------------------------------------------
  0 |    1     0     0     0     0     0     0 ... (A000007)
  1 |    2     3     5     7    11    13    17     (A000040)
  2 |    4     6     9    10    14    15    21     (A001358)
  3 |    8    12    18    20    27    28    30     (A014612)
  4 |   16    24    36    40    54    56    60     (A014613)
  5 |   32    48    72    80   108   112   120     (A014614)
  6 |   64    96   144   160   216   224   240     (A046306)
  7 |  128   192   288   320   432   448   480     (A046308)
  8 |  256   384   576   640   864   896   960     (A046310)
       ...
Triangle begins:
  0 |    1
  1 |    0    2
  2 |    0    3    4
  3 |    0    5    6    8
  4 |    0    7    9   12   16
  5 |    0   11   10   18   24   32
  6 |    0   13   14   20   36   48    64
  7 |    0   17   15   27   40   72    96   128
  8 |    0   19   21   28   54   80   144   192   256
       ...
(End)
		

Crossrefs

The column sequences (without leading zeros) are: A000007, A000040 (primes), A001358, A014612-4, A046306, A046308, A046310, A046312, A046314, A069272-A069281 for m=0..20, respectively.
A078840 is this table with the zeros omitted.

Programs

  • Mathematica
    With[{nn = 11}, Function[s, Function[t, Table[Function[m, If[m == 1, Boole[k == 1], t[[m, k]]]][n - k + 1], {n, nn}, {k, n, 1, -1}]]@ Map[Position[s, #][[All, 1]] &, Range[0, nn]]]@ PrimeOmega@ Range[2^nn]] (* or *)
    a = {1}; Do[Block[{r = {Prime@ n}}, Do[AppendTo[r, SelectFirst[ Range[a[[-(n - i)]] + 1, 2^n], PrimeOmega@ # == i &]], {i, 2, n - 1}]; a = Join[a, {0}, If[n == 1, {}, r], {2^n}]], {n, 11}]; a (* Michael De Vlieger, May 24 2017 *)
  • Python
    from math import isqrt, comb, prod
    from sympy import prime, primerange, integer_nthroot, primepi
    def A091538(n):
        a = (m:=isqrt(k:=n+1<<1))+(k>m*(m+1))
        r = n-comb(a,2)
        w = a-r
        if r==0: return int(w==1)
        if r==1: return prime(w)
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(w+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,r)))
        return bisection(f,w,w) # Chai Wah Wu, Jun 11 2025

Formula

For n>=m>=1: a(n, m)= (n-m+1)-th member in the strictly monotonically increasing sequence of numbers N satisfying: N=product(p(k)^(e_k), k=1..) with p(k) := A000040(k) (k-th prime) such that sum(e_k, k=1..) = m, where the e_k are nonnegative. if m=0 : a(n, 0)=1 if n=0 else 0. If n

A120040 Number of 9-almost primes 9ap such that 2^n < 9ap <= 2^(n+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 8, 22, 47, 102, 232, 482, 1062, 2217, 4738, 10051, 21083, 44315, 92608, 193824, 402936, 838879, 1739794, 3605077, 7457977, 15404202, 31781036, 65481376, 134777594, 277096118, 569173839, 1168002568, 2394834166
Offset: 0

Author

Keywords

Comments

The partial sum equals the number of Pi_9(2^n).

Examples

			(2^9, 2^10] there is one semiprime, namely 768. 512 was counted in the previous entry.
		

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    t = Table[AlmostPrimePi[9, 2^n], {n, 0, 30}]; Rest@t - Most@t

A113741 Pierpont 9-almost primes. 9-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

1601009443167990625, 1897492673384285185, 39346408075296537575425, 46005119909369701466113, 221073919720733357899777, 2153693963075557766310748, 3925770232266214525108225
Offset: 1

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 1601009443167990625 = (2^5)*(3^35)+1 = 5 * 5 * 5 * 5 * 5 * 7 * 11 * 241 * 27608073601.
a(2) = 1897492673384285185 = (2^10)*(3^32)+1 = 5 * 13 * 13 * 13 * 41 * 41 * 373 * 2357 * 116881.
		

Crossrefs

Intersection of A046312 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==9, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 02 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 9.

Extensions

Extended by Ray Chandler, Nov 08 2005

A179702 Numbers of the form p^4*q^5 where p and q are two distinct primes.

Original entry on oeis.org

2592, 3888, 20000, 50000, 76832, 151875, 253125, 268912, 468512, 583443, 913952, 1361367, 2576816, 2672672, 3557763, 4170272, 5940688, 6940323, 7503125, 8954912, 10504375, 13045131, 20295603, 22632992, 22717712, 29552672, 30074733
Offset: 1

Author

Keywords

Comments

Subsequence of A046312 and of A137493. - R. J. Mathar, Jul 27 2010

Programs

  • Mathematica
    fQ[n_] := Sort[Last /@ FactorInteger @n] == {4, 5}; Select[ Range@ 31668000, fQ] (* fixed by Robert G. Wilson v, Aug 26 2010 *)
    lst = {}; Do[ If[p != q, AppendTo[lst, Prime@p^4*Prime@q^5]], {p, 12}, {q, 10}]; Take[ Sort@ Flatten@ lst, 27] (* Robert G. Wilson v, Aug 26 2010 *)
    Take[Union[First[#]^4 Last[#]^5&/@Flatten[Permutations/@Subsets[ Prime[ Range[30]],{2}],1]],30] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/5), t=p^5;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179702(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(5) - P(9) = A085964 * A085965 - A085969 = 0.000748..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Edited and extended by Ray Chandler and R. J. Mathar, Jul 26 2010

A125149 a(n) is the least k such that the n-almost prime count is positive and equal to the (n-1)-almost prime count. a(0) = 1.

Original entry on oeis.org

1, 2, 10, 15495, 151165506066
Offset: 0

Author

Keywords

Comments

Unlike any of the prime number races in which any particular form may lead or trail, this sequence demonstrates that although the count of numbers having k prime factors begins by trailing the count for k-1 prime factors, eventually they exchange positions in the race. This can be seen by looking at A126279 or A126280.
The fundamental theorem of arithmetic, or unique factorization theorem, states that every natural number greater than 1 either is itself a prime number, or can be written as a unique product of prime numbers. It had a proof sketched by Euclid, then corrected and completed in "Disquisitiones Arithmeticae" [Carl Friedrich Gauss, 1801]. It fails in many rings of algebraic integers [Ernst Kummer, 1843], a discovery initiating algebraic number theory. Counting the elements in the unique product of prime numbers classifies natural numbers into primes, semiprimes, 3-almost primes and so on. This sequence quantifies a previously undescribed structure to that classification.
We took the first k where the two relevant counts are the same. If instead we took the least k such that the n-almost prime count from k onwards exceeds the (n-1)-almost prime count, the sequence would begin: 3, 34, 15530, ... [see A180126].
The prime count and the semiprime count are identical for 1, 10, 15, 16, 22, 25, 29, 30, 33.
The semiprime count and the 3-almost prime count are identical for 1, 2, 3, 15495, 15496, 15497, 15498, 15508, 15524, 15525, 15529.
The numbers of 3-almost primes and 4-almost primes are equal at 151165506066 and 731 larger numbers, the last one being 151165607041. See A180126. - T. D. Noe, Aug 11 2010
Landau's asymptotic formula suggests that a(n) is about exp(exp(n-1)). - Charles R Greathouse IV, Mar 14 2011

Examples

			a(1) = 2 since 1 has no prime factors and 2 has one prime factor, therefore prime factor counts of 0 and 1 occur equally often in the first 2 integers.
a(2) = 10 since there are 4 primes {2, 3, 5 & 7} and 4 semiprimes {4, 6, 9 & 10} less than or equal to 10.
a(4) = 151165506066 since there are 32437255807 4-almost primes and 3-almost primes <= a(4).
		

Crossrefs

Sequences listing r-almost primes, that is, k such that A001222(k) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).
Cf. A180126.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    f[n_] := Block[{k = 2^n}, While[AlmostPrimePi[n, k] < AlmostPrimePi[n - 1, k], k++ ]; k];

Extensions

Changed 33 to 34 in a comment. - T. D. Noe, Aug 11 2010
Edited by Peter Munn, Dec 17 2022

A046311 Numbers that are divisible by at least 9 primes (counted with multiplicity).

Original entry on oeis.org

512, 768, 1024, 1152, 1280, 1536, 1728, 1792, 1920, 2048, 2304, 2560, 2592, 2688, 2816, 2880, 3072, 3200, 3328, 3456, 3584, 3840, 3888, 4032, 4096, 4224, 4320, 4352, 4480, 4608, 4800, 4864, 4992, 5120, 5184, 5376, 5632, 5760, 5832, 5888, 6048, 6144
Offset: 1

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Subsequence of A033987, A046304, A046305, A046307, and A046309.
Cf. A046312.

Programs

  • Mathematica
    Select[Range[6200],PrimeOmega[#]>8&] (* Harvey P. Dale, May 20 2013 *)
  • PARI
    is(n)=bigomega(n)>8 \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A046311(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+1+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,9)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024

Formula

Product p_i^e_i with Sum e_i >= 9.
a(n) = n + O(n (log log n)^7/log n). - Charles R Greathouse IV, Apr 07 2017

A046335 Palindromes with exactly 9 prime factors (counted with multiplicity).

Original entry on oeis.org

4224, 6336, 21312, 23232, 27072, 213312, 276672, 618816, 2133312, 2177712, 2198912, 2308032, 2513152, 2536352, 2545452, 2551552, 2553552, 2572752, 2597952, 2725272, 2745472, 2747472, 2774772, 2970792, 2994992, 4099904
Offset: 1

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Previous Showing 21-30 of 45 results. Next