cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A109354 a(n) = 6^((n^2 - n)/2).

Original entry on oeis.org

1, 1, 6, 216, 46656, 60466176, 470184984576, 21936950640377856, 6140942214464815497216, 10314424798490535546171949056, 103945637534048876111514866313854976, 6285195213566005335561053533150026217291776, 2280250319867037997421842330085227917956272625811456
Offset: 0

Views

Author

Philippe Deléham, Aug 25 2005

Keywords

Comments

Sequence given by the Hankel transform (see A001906 for definition) of A078018 = {1, 1, 7, 55, 469, 4237, 39907, 387739, ...}; example: det([1, 1, 7, 55; 1, 7, 55, 469; 7, 55, 469, 4237; 55, 469, 4237, 39907]) = 6^6 = 46656.
In general, sequences of the form m^((n^2 - n)/2) enumerate the graphs with n labeled nodes with m types of edge. a(n) therefore is the number of labeled graphs with n nodes with 6 types of edge. - Mark Stander, Apr 11 2019

Crossrefs

Programs

  • Mathematica
    Table[6^((n^2-n)/2),{n,0,10}] (* Harvey P. Dale, May 28 2013 *)
  • PARI
    a(n) = 6^((n^2 - n)/2); \\ Michel Marcus, Apr 12 2019

Formula

a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(6i, j).
G.f. A(x) satisfies: A(x) = 1 + x * A(6*x). - Ilya Gutkovskiy, Jun 04 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 02 2020

A128386 Expansion of c(3*x^2)/(1-x*c(3*x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 7, 28, 58, 232, 523, 2092, 4966, 19864, 48838, 195352, 492724, 1970896, 5068915, 20275660, 52955950, 211823800, 560198962, 2240795848, 5987822380, 23951289520, 64563867454, 258255469816, 701383563388, 2805534253552
Offset: 0

Views

Author

Paul Barry, Feb 28 2007

Keywords

Comments

Hankel transform is 3^C(n+1,2) = A047656(n+1).
Series reversion of x*(1+x)/(1+2*x+4*x^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)) )); // G. C. Greubel, Nov 07 2022
    
  • Mathematica
    A120730[n_, k_]:= If[n>2*k, 0, Binomial[n,k]*(2*k-n+1)/(k+1)];
    A126386[n_]:= Sum[3^k*A120730[n, n-k], {k,0,n}];
    Table[A126386[n], {n,0,50}] (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A126386(n): return sum(3^k*A120730(n,n-k) for k in range(n+1))
    [A126386(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

G.f.: (sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)).
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n+j)*2^(2*k-j).
a(n) = Sum_{k=0..floor(n/2)} C(n,n-k)*(n-2*k+1)*3^k/(n-k+1);
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*3^k.
a(n) = Sum_{k=0..n} 3^k*A120730(n,n-k). - Philippe Deléham, Mar 03 2007
D-finite with recurrence (n+1)*a(n) - 4*(n+1)*a(n-1) + 12*(2-n)*a(n-2) + 48*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 14 2011

A157783 Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.

Original entry on oeis.org

1, 1, -1, 3, -4, 1, 27, -39, 13, -1, 729, -1080, 390, -40, 1, 59049, -88209, 32670, -3630, 121, -1, 14348907, -21493836, 8027019, -914760, 33033, -364, 1, 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2009

Keywords

Comments

Row sums except n=0 are zero.
Triangle T(n,k), 0 <= k <= n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,...] (for q=3)=[1,2,9,24,81,234,729,2160,6561,...] DELTA [ -1,0,-3,0,-9,0,-27,0,-81,0,-243,0,...] where DELTA is the operator defined in A084938; see A122006 and A000244. - Philippe Deléham, Mar 09 2009

Examples

			Triangle begins
  1;
  1, -1;
  3, -4, 1;
  27, -39, 13, -1;
  729, -1080, 390, -40, 1;
  59049, -88209, 32670, -3630, 121, -1;
  14348907, -21493836, 8027019, -914760, 33033, -364, 1;
  10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1;
  22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1;
Row n=3 is 27 - 39*x + 13*x^2 - x^3.
		

Crossrefs

Cf. A157832, A135950, A022166, A047656 (column k=1), A003462 (subdiagonal k=n-1), A203243 (subdiagonal k=n-2).

Programs

  • Maple
    A157783 := proc(n,k)
        product( 3^(i-1)-x,i=1..n) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Oct 15 2013
  • Mathematica
    Clear[f, q, M, n, m];
    q = 3;
    f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
    M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
    Table[M[n], {n, 1, 10}];
    Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
    a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
    Flatten[a]

A109493 a(n) = 7^((n^2 - n)/2).

Original entry on oeis.org

1, 1, 7, 343, 117649, 282475249, 4747561509943, 558545864083284007, 459986536544739960976801, 2651730845859653471779023381601, 107006904423598033356356300384937784807
Offset: 0

Views

Author

Philippe Deléham, Aug 29 2005

Keywords

Comments

Sequence given by the Hankel transform (see A001906 for definition) of A081178 = {1, 1, 8, 71, 680, 6882, 72528, 788019, ...}; example: det([1, 1, 8, 71; 1, 8, 71, 680; 8, 71, 680, 6882; 71, 680, 6882, 72528]) = 7^6 = 117649.
In general, sequences of the form m^((n^2 - n)/2) enumerate the graphs with n labeled nodes with m types of edge. a(n) therefore is the number of labeled graphs with n nodes with 7 types of edge. - Mark Stander, Apr 11 2019

Crossrefs

Programs

Formula

a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(7i, j).
G.f. A(x) satisfies: A(x) = 1 + x * A(7*x). - Ilya Gutkovskiy, Jun 04 2020

A203148 (n-1)-st elementary symmetric function of {3,9,...,3^n}.

Original entry on oeis.org

1, 12, 351, 29160, 7144929, 5223002148, 11433166050879, 75035879252272080, 1477081305957768349761, 87223128348206814118735932, 15451489966710801620870785316511, 8211586182553137756809552940033725880, 13091937140529934508508023103481190655434529
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Comments

From R. J. Mathar, Oct 01 2016: (Start)
The k-th elementary symmetric functions of the integers 3^j, j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0:
1;
1 3;
1 12 27;
1 39 351 729;
1 120 3510 29160 59049;
1 363 32670 882090 7144929 14348907;
which is the row-reversed version of A173007. This here is the first subdiagonal. The diagonal seems to be A047656. The first column is A029858. (End)

Crossrefs

Programs

  • Magma
    [(1/2)*(3^n -1)*3^(Binomial(n,2)): n in [1..20]]; // G. C. Greubel, Feb 24 2021
  • Mathematica
    f[k_]:= 3^k; t[n_]:= Table[f[k], {k, 1, n}];
    a[n_]:= SymmetricPolynomial[n - 1, t[n]];
    Table[a[n], {n, 1, 16}] (* A203148 *)
    Table[1/2 (3^n - 1) 3^Binomial[n, 2], {n, 1, 20}] (* Emanuele Munarini, Sep 14 2017 *)
  • Sage
    [(1/2)*(3^n -1)*3^(binomial(n,2)) for n in (1..20)] # G. C. Greubel, Feb 24 2021
    

Formula

a(n) = (1/2)*(3^n-1)*3^(binomial(n,2)). - Emanuele Munarini, Sep 14 2017

A290000 a(n) = Product_{k=1..n-1} (3^k + 1).

Original entry on oeis.org

1, 1, 4, 40, 1120, 91840, 22408960, 16358540800, 35792487270400, 234870301468364800, 4623187014103292723200, 272999193182799435304960000, 48361261073946554365403054080000, 25701205307660304745058529866383360000, 40976048450930207702360695570691784048640000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2020

Keywords

Crossrefs

Sequences of the form Product_{j=1..n-1} (m^j + 1): A000012 (m=0), A011782 (m=1), A028362 (m=2), this sequence (m=3), A309327 (m=4).

Programs

  • Magma
    [n lt 3 select 1 else (&*[3^j +1: j in [1..n-1]]): n in [1..20]]; // G. C. Greubel, Feb 21 2021
  • Mathematica
    Table[Product[3^k + 1, {k, 1, n - 1}], {n, 0, 14}]
  • PARI
    a(n) = prod(k=1, n-1, 3^k + 1); \\ Michel Marcus, Jun 06 2020
    
  • Sage
    from sage.combinat.q_analogues import q_pochhammer
    [1]+[3^(binomial(n,2))*q_pochhammer(n-1, -1/3, 1/3) for n in (1..20)] # G. C. Greubel, Feb 21 2021
    

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(3*x) / (1 - x).
G.f.: Sum_{k>=0} 3^(k*(k - 1)/2) * x^k / Product_{j=0..k-1} (1 - 3^j*x).
a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * a(k).
a(n) ~ c * 3^(n*(n - 1)/2), where c = Product_{k>=1} (1 + 1/3^k) = 1.564934018567011537938849... = A132324.
a(n) = 3^(binomial(n+1,2))*(-1/3;1/3){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Feb 21 2021

A109966 a(n) = 8^((n^2-n)/2).

Original entry on oeis.org

1, 1, 8, 512, 262144, 1073741824, 35184372088832, 9223372036854775808, 19342813113834066795298816, 324518553658426726783156020576256, 43556142965880123323311949751266331066368, 46768052394588893382517914646921056628989841375232, 401734511064747568885490523085290650630550748445698208825344
Offset: 0

Views

Author

Philippe Deléham, Sep 01 2005

Keywords

Comments

Sequence given by the Hankel transform (see A001906 for definition) of A082147 = {1, 1, 9, 89, 945, 10577, 123129, 1476841, ...}; example: det([1, 1, 9, 89; 1, 9, 89, 945; 9, 89, 945, 10577; 89, 945, 10577, 123129]) = 8^6 = 262144.
The number of labeled multigraphs on n vertices such that (i) no self loops are allowed; (ii) all edges are painted in one of 3 colors; (iii) edges between any pair of vertices are painted in distinct colors. Note, this implies that there are at most 3 edges between any vertex pair. Also note there is no restriction on the color of edges incident to a common vertex. - Geoffrey Critzer, Jan 14 2020

Crossrefs

Programs

Formula

a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(8i, j).
Hankel transform of A059435. - Philippe Deléham, Sep 03 2006

Extensions

a(10) corrected and a(11), a(12) from Georg Fischer, Apr 01 2022

A263394 a(n) = Product_{i=1..n} (3^i - 2^i).

Original entry on oeis.org

1, 5, 95, 6175, 1302925, 866445125, 1784010512375, 11248186280524375, 215638979183932793125, 12512451767147700321078125, 2190917791975795178520458609375, 1155369543009475708416871245360859375, 1832567448623162714866960405275465241328125
Offset: 1

Views

Author

Bob Selcoe, Mar 02 2016

Keywords

Comments

Generally, for sequences of the form a(n) = Product_{i=1..n} j^i-k^i, where j>k>=1 and n>=1: given probability p=(k/j)^n that an outcome will occur at the n-th stage of an infinite process, then r = 1 - a(n)/j^((n^2+n)/2) is the probability that the outcome has occurred up to and including the n-th iteration. Here, j=3 and k=2, so p=(2/3)^n and r = 1-a(n)/A047656(n+1). The limiting ratio of r ~ 0.9307279.

Crossrefs

Cf. sequences of the form Product_{i=1..n}(j^i - 1): A005329 (j=2), A027871 (j=3), A027637 (j=4), A027872 (j=5), A027873 (j=6), A027875 (j=7),A027876 (j=8), A027877 (j=9), A027878 (j=10), A027879 (j=11), A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1: A269576 (j=4, k=3), A269661 (j=5, k=4).

Programs

Formula

a(n) = Product_{i=1..n} A001047(i).
a(n) ~ c * 3^(n*(n+1)/2), where c = QPochhammer(2/3) = 0.0692720728018644... . - Vaclav Kotesovec, Oct 10 2016

A294352 Product of first n terms of the binomial transform of the factorial.

Original entry on oeis.org

1, 2, 10, 160, 10400, 3390400, 6635012800, 90899675360000, 9962695319131360000, 9827302289744364817600000, 96937502343569678741652977600000, 10518214548789290471667075399621491200000, 13695360582395151673134516587047571322777664000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[Binomial[m, k]*k!, {k, 0, m}], {m, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * exp(n+1) * BarnesG(n+2).
a(n) ~ c * n^(n^2/2 + n + 5/12) * (2*Pi)^(n/2 + 1/2) / (A * exp(3*n^2/4 - 13/12))
where c = 0.24314714161123874545254157058990661627416712475691705561000082745...
and A is the Glaisher-Kinkelin constant A074962.

A042891 Denominators of continued fraction convergents to sqrt(977).

Original entry on oeis.org

1, 3, 4, 35, 179, 214, 393, 1393, 10144, 11537, 21681, 163304, 511593, 674897, 1186490, 6607347, 54045266, 60652613, 236003105, 14692845123, 44314538474, 59007383597, 516373607250, 2640875419847, 3157249027097
Offset: 0

Views

Author

Keywords

Comments

The Hankel transform (see A001906 for definition) of this sequence forms the sequence A047656(n+1)= [1,3,27,729,59049,14348907,...] . - Philippe Deléham, Aug 29 2006

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[977], 40]] (* Harvey P. Dale, May 09 2012 *)

Formula

The Hankel transform (see A001906 for definition) of this sequence forms the sequence A047656(n+1)= [1,3,27,729,59049,14348907,...]. - Philippe Deléham, Aug 29 2006
a(n) = 14753497736*a(n-19) - a(n-38) for n > 37. - Vincenzo Librandi, Jan 31 2014
Previous Showing 11-20 of 31 results. Next