A109354
a(n) = 6^((n^2 - n)/2).
Original entry on oeis.org
1, 1, 6, 216, 46656, 60466176, 470184984576, 21936950640377856, 6140942214464815497216, 10314424798490535546171949056, 103945637534048876111514866313854976, 6285195213566005335561053533150026217291776, 2280250319867037997421842330085227917956272625811456
Offset: 0
A128386
Expansion of c(3*x^2)/(1-x*c(3*x^2)), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 1, 4, 7, 28, 58, 232, 523, 2092, 4966, 19864, 48838, 195352, 492724, 1970896, 5068915, 20275660, 52955950, 211823800, 560198962, 2240795848, 5987822380, 23951289520, 64563867454, 258255469816, 701383563388, 2805534253552
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Slides, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)) )); // G. C. Greubel, Nov 07 2022
-
A120730[n_, k_]:= If[n>2*k, 0, Binomial[n,k]*(2*k-n+1)/(k+1)];
A126386[n_]:= Sum[3^k*A120730[n, n-k], {k,0,n}];
Table[A126386[n], {n,0,50}] (* G. C. Greubel, Nov 07 2022 *)
-
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A126386(n): return sum(3^k*A120730(n,n-k) for k in range(n+1))
[A126386(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
A157783
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 3, -4, 1, 27, -39, 13, -1, 729, -1080, 390, -40, 1, 59049, -88209, 32670, -3630, 121, -1, 14348907, -21493836, 8027019, -914760, 33033, -364, 1, 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093
Offset: 0
Triangle begins
1;
1, -1;
3, -4, 1;
27, -39, 13, -1;
729, -1080, 390, -40, 1;
59049, -88209, 32670, -3630, 121, -1;
14348907, -21493836, 8027019, -914760, 33033, -364, 1;
10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1;
22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1;
Row n=3 is 27 - 39*x + 13*x^2 - x^3.
-
A157783 := proc(n,k)
product( 3^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
Clear[f, q, M, n, m];
q = 3;
f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
Table[M[n], {n, 1, 10}];
Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
Flatten[a]
A109493
a(n) = 7^((n^2 - n)/2).
Original entry on oeis.org
1, 1, 7, 343, 117649, 282475249, 4747561509943, 558545864083284007, 459986536544739960976801, 2651730845859653471779023381601, 107006904423598033356356300384937784807
Offset: 0
A203148
(n-1)-st elementary symmetric function of {3,9,...,3^n}.
Original entry on oeis.org
1, 12, 351, 29160, 7144929, 5223002148, 11433166050879, 75035879252272080, 1477081305957768349761, 87223128348206814118735932, 15451489966710801620870785316511, 8211586182553137756809552940033725880, 13091937140529934508508023103481190655434529
Offset: 1
-
[(1/2)*(3^n -1)*3^(Binomial(n,2)): n in [1..20]]; // G. C. Greubel, Feb 24 2021
-
f[k_]:= 3^k; t[n_]:= Table[f[k], {k, 1, n}];
a[n_]:= SymmetricPolynomial[n - 1, t[n]];
Table[a[n], {n, 1, 16}] (* A203148 *)
Table[1/2 (3^n - 1) 3^Binomial[n, 2], {n, 1, 20}] (* Emanuele Munarini, Sep 14 2017 *)
-
[(1/2)*(3^n -1)*3^(binomial(n,2)) for n in (1..20)] # G. C. Greubel, Feb 24 2021
A290000
a(n) = Product_{k=1..n-1} (3^k + 1).
Original entry on oeis.org
1, 1, 4, 40, 1120, 91840, 22408960, 16358540800, 35792487270400, 234870301468364800, 4623187014103292723200, 272999193182799435304960000, 48361261073946554365403054080000, 25701205307660304745058529866383360000, 40976048450930207702360695570691784048640000
Offset: 0
-
[n lt 3 select 1 else (&*[3^j +1: j in [1..n-1]]): n in [1..20]]; // G. C. Greubel, Feb 21 2021
-
Table[Product[3^k + 1, {k, 1, n - 1}], {n, 0, 14}]
-
a(n) = prod(k=1, n-1, 3^k + 1); \\ Michel Marcus, Jun 06 2020
-
from sage.combinat.q_analogues import q_pochhammer
[1]+[3^(binomial(n,2))*q_pochhammer(n-1, -1/3, 1/3) for n in (1..20)] # G. C. Greubel, Feb 21 2021
A109966
a(n) = 8^((n^2-n)/2).
Original entry on oeis.org
1, 1, 8, 512, 262144, 1073741824, 35184372088832, 9223372036854775808, 19342813113834066795298816, 324518553658426726783156020576256, 43556142965880123323311949751266331066368, 46768052394588893382517914646921056628989841375232, 401734511064747568885490523085290650630550748445698208825344
Offset: 0
A263394
a(n) = Product_{i=1..n} (3^i - 2^i).
Original entry on oeis.org
1, 5, 95, 6175, 1302925, 866445125, 1784010512375, 11248186280524375, 215638979183932793125, 12512451767147700321078125, 2190917791975795178520458609375, 1155369543009475708416871245360859375, 1832567448623162714866960405275465241328125
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A269576 (j=4, k=3),
A269661 (j=5, k=4).
-
[&*[ 3^k-2^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
A263394:=n->mul(3^i-2^i, i=1..n): seq(A263394(n), n=1..15); # Wesley Ivan Hurt, Mar 02 2016
-
Table[Product[3^i - 2^i, {i, n}], {n, 15}] (* Wesley Ivan Hurt, Mar 02 2016 *)
FoldList[Times,Table[3^i-2^i,{i,15}]] (* Harvey P. Dale, Feb 06 2017 *)
-
a(n) = prod(k=1, n, 3^k-2^k); \\ Michel Marcus, Mar 05 2016
A294352
Product of first n terms of the binomial transform of the factorial.
Original entry on oeis.org
1, 2, 10, 160, 10400, 3390400, 6635012800, 90899675360000, 9962695319131360000, 9827302289744364817600000, 96937502343569678741652977600000, 10518214548789290471667075399621491200000, 13695360582395151673134516587047571322777664000000
Offset: 0
-
Table[Product[Sum[Binomial[m, k]*k!, {k, 0, m}], {m, 0, n}], {n, 0, 12}]
A042891
Denominators of continued fraction convergents to sqrt(977).
Original entry on oeis.org
1, 3, 4, 35, 179, 214, 393, 1393, 10144, 11537, 21681, 163304, 511593, 674897, 1186490, 6607347, 54045266, 60652613, 236003105, 14692845123, 44314538474, 59007383597, 516373607250, 2640875419847, 3157249027097
Offset: 0
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14753497736, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Comments