A178301
Triangle T(n,k) = binomial(n,k)*binomial(n+k+1,n+1) read by rows, 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 8, 10, 1, 15, 45, 35, 1, 24, 126, 224, 126, 1, 35, 280, 840, 1050, 462, 1, 48, 540, 2400, 4950, 4752, 1716, 1, 63, 945, 5775, 17325, 27027, 21021, 6435, 1, 80, 1540, 12320, 50050, 112112, 140140, 91520, 24310, 1, 99, 2376, 24024, 126126, 378378, 672672, 700128, 393822, 92378
Offset: 0
n=0: 1;
n=1: 1, 3;
n=2: 1, 8, 10;
n=3: 1, 15, 45, 35;
n=4: 1, 24, 126, 224, 126;
n=5: 1, 35, 280, 840, 1050, 462;
n=6: 1, 48, 540, 2400, 4950, 4752, 1716;
n=7: 1, 63, 945, 5775, 17325, 27027, 21021, 6435;
-
A178301 := proc(n,k)
binomial(n,k)*binomial(n+k+1,n+1) ;
end proc: # R. J. Mathar, Mar 24 2013
R := proc(n) add((-1)^(n+k)*(2*k+1)*orthopoly:-P(k,2*x+1)/(n+1), k=0..n) end:
for n from 0 to 6 do seq(coeff(R(n), x, k), k=0..n) od; # Peter Luschny, Aug 25 2021
-
Flatten[Table[Binomial[n,k]Binomial[n+k+1,n+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 23 2014 *)
-
create_list(binomial(n,k)*binomial(n+k+1,n+1),n,0,12,k,0,n); /* Emanuele Munarini, Dec 16 2016 */
-
R(n,x) = sum(k=0,n, (-1)^(n+k) * (2*k+1) * pollegendre(k,2*x+1)) / (n+1); \\ Max Alekseyev, Aug 25 2021
A098660
E.g.f. BesselI(0,2*sqrt(2)*x) + BesselI(1,2*sqrt(2)*x)/sqrt(2).
Original entry on oeis.org
1, 1, 4, 6, 24, 40, 160, 280, 1120, 2016, 8064, 14784, 59136, 109824, 439296, 823680, 3294720, 6223360, 24893440, 47297536, 189190144, 361181184, 1444724736, 2769055744, 11076222976, 21300428800, 85201715200, 164317593600
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+4*x-Sqrt(1-8*x^2))/(4*x*Sqrt(1-8*x^2)))); // G. C. Greubel, Aug 17 2018
-
nmax = 30; CoefficientList[Series[BesselI[0, 2*Sqrt[2]*x] + BesselI[1, 2*Sqrt[2]*x]/Sqrt[2], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
-
x='x+O('x^30); Vec((1+4*x-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2))) \\ G. C. Greubel, Aug 17 2018
A119976
E.g.f. exp(2x)*(Bessel_I(0,2*sqrt(2)x) + Bessel_I(1,2*sqrt(2)x)/sqrt(2)).
Original entry on oeis.org
1, 3, 12, 50, 216, 952, 4256, 19224, 87520, 400928, 1845888, 8533824, 39590656, 184216320, 859354112, 4017738112, 18820855296, 88317817344, 415075665920, 1953473141760, 9205135036416, 43425512132608, 205072796270592
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+2*x)/(4*x*Sqrt(1-4*x-4*x^2)) -1/(4*x))); // G. C. Greubel, Aug 17 2018
-
CoefficientList[Series[(1+2*x)/(4*x*Sqrt[1-4*x-4*x^2])-1/(4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
-
x='x+O('x^50); Vec((1+2*x)/(4*x*sqrt(1-4*x-4*x^2))-1/(4*x)) \\ G. C. Greubel, Feb 08 2017
A296129
Array read by antidiagonals: the number of directed elements with area n on the lattice T_{2k+1}.
Original entry on oeis.org
0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 8, 19, 6, 1, 0, 16, 96, 46, 8, 1, 0, 32, 501, 376, 85, 10, 1, 0, 64, 2668, 3176, 960, 136, 12, 1, 0, 128, 14407, 27384, 11201, 1960, 199, 14, 1, 0, 256, 78592, 239464, 133400, 29176, 3488, 274, 16, 1, 0, 512, 432073, 2115712, 1611317, 443296, 63141, 5656, 361, 18, 1, 0, 1024, 2390004
Offset: 0
The array starts with rows n>=0 and columns k>=0 as:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 4, 6, 8, 10, 12, 14, 16, 18, ...
4, 19, 46, 85, 136, 199, 274, 361, 460, ...
8, 96, 376, 960, 1960, 3488, 5656, 8576, 12360, ...
16, 501, 3176, 11201, 29176, 63141, 120576, 210401, 342976, ...
32, 2668, 27384, 133400, 443296,1166628,2623544,5268400,9713376, ...
-
A296129 := proc(n,k)
local a,i,l;
a := 0 ;
for i from 1 to n do
add( binomial(i,l)*binomial((k+1)*l,i-1),l=0..i) ;
a := a+ %*binomial(n-1,i-1)*(i*k+1)/(2*i*(k+1)) ;
end do;
a ;
end proc:
A317060
a(n) is the number of time-dependent assembly trees satisfying the edge gluing rule for a cycle on n vertices.
Original entry on oeis.org
1, 1, 3, 14, 85, 642, 5782, 60484, 720495, 9627210, 142583430, 2318126196, 41042117558, 786002475244, 16189215818220, 356847596226840, 8381418010559225, 208967274455769810, 5511890008010697306
Offset: 1
A361743
Central circular Delannoy numbers: a(n) is the number of Delannoy loops on an n X n toroidal grid.
Original entry on oeis.org
1, 2, 16, 114, 768, 5010, 32016, 201698, 1257472, 7777314, 47800080, 292292946, 1779856128, 10799942322, 65336473104, 394246725570, 2373580947456, 14262064668738, 85546366040592, 512323096241714, 3063932437123840, 18300660294266322, 109183694129335056
Offset: 0
When n=2 see Figure 3 of "The circular Delannoy Category".
-
a[n_Integer?Positive] := Sum[k Binomial[n, k] Binomial[n, k] 2^k, {k, 1, n}]
-
a(n) = if(n == 0, 1, sum(k=0, n, binomial(n, k)^2*k*2^k)) \\ Winston de Greef, Mar 22 2023
-
from math import comb
def A361743(n): return sum(comb(n,k)**2*k<Chai Wah Wu, Mar 22 2023
A156136
A triangle of polynomial coefficients related to Mittag-Leffler polynomials: p(x,n)=Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x).
Original entry on oeis.org
1, 2, 2, 3, 12, 4, 4, 36, 48, 8, 5, 80, 240, 160, 16, 6, 150, 800, 1200, 480, 32, 7, 252, 2100, 5600, 5040, 1344, 64, 8, 392, 4704, 19600, 31360, 18816, 3584, 128, 9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256, 10, 810, 17280, 141120, 508032
Offset: 0
1;
2, 2;
3, 12, 4;
4, 36, 48, 8;
5, 80, 240, 160, 16;
6, 150, 800, 1200, 480, 32;
7, 252, 2100, 5600, 5040, 1344, 64;
8, 392, 4704, 19600, 31360, 18816, 3584, 128;
9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256;
10, 810, 17280, 141120, 508032, 846720, 645120, 207360, 23040, 512;
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 75-76
-
Clear[t0, p, x, n, m];
p[x_, n_] = Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x);
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 1, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 1, 10}];
Flatten[%]
A199856
Triangle T(n,k), read by rows, given by (-1,3,0,0,0,0,0,0,0,0,0,...) DELTA (1,0,-1/3,1/3,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, -1, 1, -2, 1, 1, -4, 1, 2, 1, -8, 0, 4, 3, 1, -16, -4, 7, 8, 4, 1, -32, -16, 10, 19, 13, 5, 1, -64, -48, 8, 41, 37, 19, 6, 1, -128, -128, -16, 80, 96, 62, 26, 7, 1, -256, -320, -112, 136, 231, 183, 95, 34, 8, 1, -512, -768, -416, 176, 518, 501, 311, 137, 43, 9, 1
Offset: 0
Triangle begins :
1
-1, 1
-2, 1, 1
-4, 1, 2, 1
-8, 0, 4, 3, 1
-16, -4, 7, 8, 4, 1
-32, -16, 10, 19, 13, 5, 1
-64, -48, 8, 41, 37, 19, 6, 1
-128, -128, -16, 80, 96, 62, 26, 7, 1
A272865
Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.
Original entry on oeis.org
4, 24, 160, 132, 936, 5700, 720, 5312, 33264, 198144, 3940, 29880, 190980, 1155600, 6823620, 21672, 167712, 1088856, 6670656, 39786120, 233908896, 119812, 941640, 6189540, 38300976, 230340740, 1363667256, 7997325700
Offset: 1
Triangle starts:
4;
24, 160;
132, 936, 5700;
720, 5312, 33264, 198144;
3940, 29880, 190980, 1155600, 6823620;
- F. D. Cunden, "Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities", Phys. Rev. E 91, 060102(R) (2015).
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, "Correlators for the Wigner-Smith time-delay matrix of chaotic cavities", J. Phys. A: Math. Theor. 49, 18LT01 (2016).
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, "Moments of Random Matrices and Hypergeometric Orthogonal Polynomials", Commun. Math. Phys. 369, 1091-1145 (2019).
- F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities, arXiv:1412.2172 [cond-mat.mes-hall], 2014-2015.
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Correlators for the Wigner-Smith time-delay matrix of chaotic cavities, arXiv:1601.06690 [math-ph], 2016.
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, Moments of Random Matrices and Hypergeometric Orthogonal Polynomials, arXiv:1805.08760 [math-ph], 2018.
-
P := (n,k) -> simplify(n*hypergeom([1-k,k+1],[1],-1)*hypergeom([1-n,n+1],[2],-1)): seq(seq(4*(n*k)*(P(n,k)+P(k,n))/(n+k),k=1..n),n=1..7); # Peter Luschny, May 08 2016
-
Clear["Global`*"];(*Wigner-Smith Covariance*)
P[k_] := Sum[Binomial[k - 1, j] Binomial[k + j, j], {j, 0, k - 1}]
Q[k_] := Sum[Binomial[k, j + 1] Binomial[k + j, j], {j, 0, k - 1}]
a[k1_, k2_] := 4 (k1 k2)/(k1 + k2) (P[k1] Q[k2] + P[k2] Q[k1])
L = 10; Table[a[k, l], {k, 1, L}, {l, 1, k}]
A344563
T(n, k) = binomial(n - 1, k - 1) * binomial(n, k) * 2^k, T(0, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 4, 4, 0, 6, 24, 8, 0, 8, 72, 96, 16, 0, 10, 160, 480, 320, 32, 0, 12, 300, 1600, 2400, 960, 64, 0, 14, 504, 4200, 11200, 10080, 2688, 128, 0, 16, 784, 9408, 39200, 62720, 37632, 7168, 256, 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512
Offset: 0
[0] 1;
[1] 0, 2;
[2] 0, 4, 4;
[3] 0, 6, 24, 8;
[4] 0, 8, 72, 96, 16;
[5] 0, 10, 160, 480, 320, 32;
[6] 0, 12, 300, 1600, 2400, 960, 64;
[7] 0, 14, 504, 4200, 11200, 10080, 2688, 128;
[8] 0, 16, 784, 9408, 39200, 62720, 37632, 7168, 256;
[9] 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512.
The coefficients of the associated polynomials are in
A103371.
-
aRow := n -> seq(binomial(n-1, k-1)*binomial(n,k)*2^k, k=0..n):
seq(print(aRow(n)), n=0..9);
-
T[n_, k_] := Binomial[n-1, k-1] * Binomial[n, k] * 2^k;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
-
from math import comb
def T(n, k):
return comb(n-1, k-1)*comb(n, k)*2**k if k > 0 else k**n
print([T(n, k) for n in range(10) for k in range(n+1)]) # Michael S. Branicky, May 30 2021
Previous
Showing 11-20 of 20 results.
Comments