cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A178301 Triangle T(n,k) = binomial(n,k)*binomial(n+k+1,n+1) read by rows, 0 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 8, 10, 1, 15, 45, 35, 1, 24, 126, 224, 126, 1, 35, 280, 840, 1050, 462, 1, 48, 540, 2400, 4950, 4752, 1716, 1, 63, 945, 5775, 17325, 27027, 21021, 6435, 1, 80, 1540, 12320, 50050, 112112, 140140, 91520, 24310, 1, 99, 2376, 24024, 126126, 378378, 672672, 700128, 393822, 92378
Offset: 0

Views

Author

Alford Arnold, May 30 2010

Keywords

Comments

Antidiagonal sums are given by A113682. - Johannes W. Meijer, Mar 24 2013
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial binomial(x+n,n)*binomial(x+n,n-1) in the basis made of the binomial(x+i,i). - F. Chapoton, Nov 01 2022
Chapoton's observation above is correct: the precise expansion is binomial(x+n,n)*binomial(x+n,n-1) = Sum_{k = 0..n-1} (-1)^k*T(n-1,n-1-k)*binomial(x+2*n-1-k,2*n-1-k), as can be verified using the WZ algorithm. For example, n = 4 gives binomial(x+4,4)*binomial(x+4,3) = 35*binomial(x+7,7) - 45*binomial(x+6,6) + 15*binomial(x+5,5) - binomial(x+4,4). - Peter Bala, Jun 24 2023

Examples

			n=0: 1;
n=1: 1,  3;
n=2: 1,  8,  10;
n=3: 1, 15,  45,   35;
n=4: 1, 24, 126,  224,   126;
n=5: 1, 35, 280,  840,  1050,   462;
n=6: 1, 48, 540, 2400,  4950,  4752,  1716;
n=7: 1, 63, 945, 5775, 17325, 27027, 21021, 6435;
		

Crossrefs

Programs

  • Maple
    A178301 := proc(n,k)
            binomial(n,k)*binomial(n+k+1,n+1) ;
    end proc: # R. J. Mathar, Mar 24 2013
    R := proc(n) add((-1)^(n+k)*(2*k+1)*orthopoly:-P(k,2*x+1)/(n+1), k=0..n) end:
    for n from 0 to 6 do seq(coeff(R(n), x, k), k=0..n) od; # Peter Luschny, Aug 25 2021
  • Mathematica
    Flatten[Table[Binomial[n,k]Binomial[n+k+1,n+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 23 2014 *)
  • Maxima
    create_list(binomial(n,k)*binomial(n+k+1,n+1),n,0,12,k,0,n); /* Emanuele Munarini, Dec 16 2016 */
    
  • PARI
    R(n,x) = sum(k=0,n, (-1)^(n+k) * (2*k+1) * pollegendre(k,2*x+1)) / (n+1); \\ Max Alekseyev, Aug 25 2021

Formula

T(n,k) = A007318(n,k) * A178300(n+1,k+1).
From Peter Bala, Jun 18 2015: (Start)
n-th row polynomial R(n,x) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k+1,n+1)*x^k = Sum_{k = 0..n} (-1)^(n+k)*binomial(n+1,k+1)*binomial(n+k+1,n+1)*(1 + x)^k.
Recurrence: (2*n - 1)*(n + 1)*R(n,x) = 2*(4*n^2*x + 2*n^2 - x - 1)*R(n-1,x) - (2*n + 1)(n - 1)*R(n-2,x) with R(0,x) = 1, R(1,x) = 1 + 3*x.
A182626(n) = -R(n-1,-2) for n >= 1. (End)
From Peter Bala, Jul 20 2015: (Start)
n-th row polynomial R(n,x) = Jacobi_P(n,0,1,2*x + 1).
(1 + x)*R(n,x) gives the row polynomials of A123160. (End)
G.f.: (1+x-sqrt(1-2*x+x^2-4*x*y))/(2*(1+y)*x*sqrt(1-2*x+x^2-4*x*y)). - Emanuele Munarini, Dec 16 2016
R(n,x) = Sum_{k=0..n} (-1)^(n+k)*(2*k+1)*P(k,2*x+1)/(n+1), where P(k,x) is the k-th Legendre polynomial (cf. A100258) and P(k,2*x+1) is the k-th shifted Legendre polynomial (cf. A063007). - Max Alekseyev, Jun 28 2018; corrected by Peter Bala, Aug 08 2021
Polynomial g(n,x) = R(n,-x)/(n+1) delivers the maximum of f(1)^2/(Integral_{x=0..1} f(x)^2 dx) over all polynomials f(x) with real coefficients and deg(f(x)) <= n. This maximum equals (n+1)^2. See dxdy.ru link. - Max Alekseyev, Jun 28 2018

A098660 E.g.f. BesselI(0,2*sqrt(2)*x) + BesselI(1,2*sqrt(2)*x)/sqrt(2).

Original entry on oeis.org

1, 1, 4, 6, 24, 40, 160, 280, 1120, 2016, 8064, 14784, 59136, 109824, 439296, 823680, 3294720, 6223360, 24893440, 47297536, 189190144, 361181184, 1444724736, 2769055744, 11076222976, 21300428800, 85201715200, 164317593600
Offset: 0

Views

Author

Paul Barry, Sep 20 2004

Keywords

Comments

Third binomial transform (shifted right) is A047781. Hankel transform is A166232(n+1).

Crossrefs

Cf. A059304, A069720 (bisections).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+4*x-Sqrt(1-8*x^2))/(4*x*Sqrt(1-8*x^2)))); // G. C. Greubel, Aug 17 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[BesselI[0, 2*Sqrt[2]*x] + BesselI[1, 2*Sqrt[2]*x]/Sqrt[2], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
  • PARI
    x='x+O('x^30); Vec((1+4*x-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2))) \\ G. C. Greubel, Aug 17 2018
    

Formula

G.f.: 1/sqrt(1-8*x^2)+(1-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2)) = (1+4*x-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2)).
a(n) = binomial(n, floor(n/2))2^floor(n/2).
a(n+1) = (1/Pi)*int(x^n*(x+4)/sqrt(8-x^2),x,-2*sqrt(2),2*sqrt(2)) if n is odd [corrected by Vaclav Kotesovec, Nov 13 2017].
Conjecture: (n+1)*a(n) +(n-1)*a(n-1) -n*a(n-2) +(2-n)*a(n-3) = 0. - R. J. Mathar, Nov 15 2011

A119976 E.g.f. exp(2x)*(Bessel_I(0,2*sqrt(2)x) + Bessel_I(1,2*sqrt(2)x)/sqrt(2)).

Original entry on oeis.org

1, 3, 12, 50, 216, 952, 4256, 19224, 87520, 400928, 1845888, 8533824, 39590656, 184216320, 859354112, 4017738112, 18820855296, 88317817344, 415075665920, 1953473141760, 9205135036416, 43425512132608, 205072796270592
Offset: 0

Views

Author

Paul Barry, Jun 02 2006

Keywords

Comments

Binomial transform of A119975. Binomial transform is A047781(n+1).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+2*x)/(4*x*Sqrt(1-4*x-4*x^2)) -1/(4*x))); // G. C. Greubel, Aug 17 2018
  • Mathematica
    CoefficientList[Series[(1+2*x)/(4*x*Sqrt[1-4*x-4*x^2])-1/(4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    x='x+O('x^50); Vec((1+2*x)/(4*x*sqrt(1-4*x-4*x^2))-1/(4*x)) \\ G. C. Greubel, Feb 08 2017
    

Formula

G.f.: (1+2*x)/(4*x*sqrt(1-4*x-4*x^2))-1/(4*x);
a(n) = Sum_{k=0..n} 2^(n-k)*C(n,k)*C(k,floor(k/2))2^floor(k/2).
D-finite with recurrence: (n+1)*a(n) -2*(n+2)*a(n-1) +12*(1-n)*a(n-2) +8*(2-n)*a(n-3) = 0. - R. J. Mathar, Dec 10 2011
Shorter recurrence: n*(n+1)*a(n) = 2*n*(2*n+1)*a(n-1) + 4*(n-1)*(n+1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(20+14*sqrt(2))*(2+2*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 19 2012

A296129 Array read by antidiagonals: the number of directed elements with area n on the lattice T_{2k+1}.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 8, 19, 6, 1, 0, 16, 96, 46, 8, 1, 0, 32, 501, 376, 85, 10, 1, 0, 64, 2668, 3176, 960, 136, 12, 1, 0, 128, 14407, 27384, 11201, 1960, 199, 14, 1, 0, 256, 78592, 239464, 133400, 29176, 3488, 274, 16, 1, 0, 512, 432073, 2115712, 1611317, 443296, 63141, 5656, 361, 18, 1, 0, 1024, 2390004
Offset: 0

Views

Author

R. J. Mathar, Dec 05 2017

Keywords

Examples

			The array starts with rows n>=0 and columns k>=0 as:
0,      0,      0,      0,      0,      0,      0,      0,      0, ...
1,      1,      1,      1,      1,      1,      1,      1,      1, ...
2,      4,      6,      8,     10,     12,     14,     16,     18, ...
4,     19,     46,     85,    136,    199,    274,    361,    460, ...
8,     96,    376,    960,   1960,   3488,   5656,   8576,  12360, ...
16,    501,   3176,  11201,  29176,  63141, 120576, 210401, 342976, ...
32,   2668,  27384, 133400, 443296,1166628,2623544,5268400,9713376, ...
		

Crossrefs

Cf. A047781 (column k=1).

Programs

  • Maple
    A296129 := proc(n,k)
        local a,i,l;
        a := 0 ;
        for i from 1 to n do
            add( binomial(i,l)*binomial((k+1)*l,i-1),l=0..i) ;
            a := a+ %*binomial(n-1,i-1)*(i*k+1)/(2*i*(k+1)) ;
        end do;
        a ;
    end proc:

A317060 a(n) is the number of time-dependent assembly trees satisfying the edge gluing rule for a cycle on n vertices.

Original entry on oeis.org

1, 1, 3, 14, 85, 642, 5782, 60484, 720495, 9627210, 142583430, 2318126196, 41042117558, 786002475244, 16189215818220, 356847596226840, 8381418010559225, 208967274455769810, 5511890008010697306
Offset: 1

Views

Author

Keywords

Comments

A time-dependent assembly tree for a connected graph G=(V, E) on n vertices is a rooted tree, each node of which is label a subset U of V and a nonnegative integer i such that:
1) each internal node has at least two children,
2) there are leaves labeled (v, 0) for each vertex v in V,
3) the label on the root is (V, m) for 1 <= m <= n-1,
4) for each node (U, i) with i < m, U is the union of the {u} for the children (u, 0) of (U, i),
5) if (U, i) and (U', i') are adjacent nodes with U a subset of U', then i
6) for each 0 <= i <= m, there exists a node (U, i) with U a subset of V.
A time-dependent assembly tree is said to satisfy the edge gluing rule if each internal vertex v of G has exactly two children and if U_1 and U_2 are the labels of the children of internal vertex v, then there is an edge (v_1,v_2) in the edge set of G such that v_1 is in U_1 and v_2 is in U_2.

Crossrefs

Programs

  • Mathematica
    Nest[Function[{a, n}, Append[a, Sum[(Binomial[n - j, n - 2 j] + Binomial[n - j - 1, n - 2 j]) a[[n - j]], {j, Floor[n/2]}]]][#, Length@ # + 1] &, {1, 1}, 17] (* Michael De Vlieger, Jul 26 2018 *)
  • PARI
    lista(nn) = my(v = vector(nn)); for (n=1, nn, if (n<=2, v[n] = 1, v[n] = sum(j=1, n\2, (binomial(n-j, n-2*j)+binomial(n-j-1,n-2*j))*v[n-j]))); v; \\ Michel Marcus, Aug 08 2018
  • Sage
    @cached_function
    def TimeDepenEdgeCyc(n):
        if n==1:
            return 1
        elif n==2:
            return 1
        else:
            return sum((binomial(n-j,n-2*j)+binomial(n-j-1, n-2*j))*TimeDepenEdgeCyc(n-j) for j in range(1, (n//2)+1))
    print(','.join(str(TimeDepenEdgeCyc(i)) for i in range(1, 20)))
    

Formula

a(n) = Sum_{j=1..floor(n/2)}(binomial(n-j, n-2j)+binomial(n-j-1,n-2j))*a(n-j), a(1)=a(2)=1.

A361743 Central circular Delannoy numbers: a(n) is the number of Delannoy loops on an n X n toroidal grid.

Original entry on oeis.org

1, 2, 16, 114, 768, 5010, 32016, 201698, 1257472, 7777314, 47800080, 292292946, 1779856128, 10799942322, 65336473104, 394246725570, 2373580947456, 14262064668738, 85546366040592, 512323096241714, 3063932437123840, 18300660294266322, 109183694129335056
Offset: 0

Author

Noah Snyder, Mar 22 2023

Keywords

Comments

An (n,m) Delannoy loop is an oriented unbased loop on a toroidal grid with points labeled by Z/n x Z/m composed of steps of the form (1,0), (0,1), and (1,1), and which loops around the torus exactly once in each of the x-direction and the y-direction. The central circular Delannoy numbers count the number of (n,n) Delannoy loops. This is a modification of the ordinary central Delannoy numbers A001850.
Dimensions of endomorphism algebras End(S^{{n}}) in the circular Delannoy category attached to the oligomorphic group of order-preserving self-bijections of the circle.

Examples

			When n=2 see Figure 3 of "The circular Delannoy Category".
		

Crossrefs

Circular analog of A001850.
Main diagonal of A361745.

Programs

  • Mathematica
    a[n_Integer?Positive] := Sum[k Binomial[n, k] Binomial[n, k] 2^k, {k, 1, n}]
  • PARI
    a(n) = if(n == 0, 1, sum(k=0, n, binomial(n, k)^2*k*2^k)) \\ Winston de Greef, Mar 22 2023
  • Python
    from math import comb
    def A361743(n): return sum(comb(n,k)**2*k<Chai Wah Wu, Mar 22 2023
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2*k*2^k for n >= 1.
a(n) = n*(D(n,n-1) + D(n-1,n-1)) = n*(D(n,n) - D(n-1,n)) for n >= 1, where D(i,j) = A008288(i,j) are the Delannoy numbers.
a(n) = 2*A108666(n) for n >= 1.
From Alois P. Heinz, Mar 22 2023: (Start)
G.f.: 1 + 2*(1-x)*x/sqrt(x^2-6*x+1)^3.
a(n) = n*A002003(n) for n >= 1.
a(n) = 2*n*A047781(n) for n >= 1. (End)
a(n) = 2*n^2*hypergeom([1 - n, 1 - n], [2], 1) for n >= 1. - Peter Luschny, Mar 22 2023

A156136 A triangle of polynomial coefficients related to Mittag-Leffler polynomials: p(x,n)=Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x).

Original entry on oeis.org

1, 2, 2, 3, 12, 4, 4, 36, 48, 8, 5, 80, 240, 160, 16, 6, 150, 800, 1200, 480, 32, 7, 252, 2100, 5600, 5040, 1344, 64, 8, 392, 4704, 19600, 31360, 18816, 3584, 128, 9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256, 10, 810, 17280, 141120, 508032
Offset: 0

Author

Roger L. Bagula, Feb 04 2009

Keywords

Examples

			1;
2, 2;
3, 12, 4;
4, 36, 48, 8;
5, 80, 240, 160, 16;
6, 150, 800, 1200, 480, 32;
7, 252, 2100, 5600, 5040, 1344, 64;
8, 392, 4704, 19600, 31360, 18816, 3584, 128;
9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256;
10, 810, 17280, 141120, 508032, 846720, 645120, 207360, 23040, 512;
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 75-76

Crossrefs

A142983, A142978, A047781 (row sums).

Programs

  • Mathematica
    Clear[t0, p, x, n, m];
    p[x_, n_] = Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x);
    Table[FullSimplify[ExpandAll[p[x, n]]], {n, 1, 10}];
    Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 1, 10}];
    Flatten[%]

Formula

p(x,n)=Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x);
p(x,n)=n Hypergeometric2F1[1 - n, 1 - n, 2, 2 x];
t(n,m)=coefficiemts(p(x,n))
T(n,m) = 2^m*A103371(n,m). - R. J. Mathar, Dec 05 2017

A199856 Triangle T(n,k), read by rows, given by (-1,3,0,0,0,0,0,0,0,0,0,...) DELTA (1,0,-1/3,1/3,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, -1, 1, -2, 1, 1, -4, 1, 2, 1, -8, 0, 4, 3, 1, -16, -4, 7, 8, 4, 1, -32, -16, 10, 19, 13, 5, 1, -64, -48, 8, 41, 37, 19, 6, 1, -128, -128, -16, 80, 96, 62, 26, 7, 1, -256, -320, -112, 136, 231, 183, 95, 34, 8, 1, -512, -768, -416, 176, 518, 501, 311, 137, 43, 9, 1
Offset: 0

Author

Philippe Deléham, Nov 11 2011

Keywords

Comments

Diagonal sums are in A199853, row sums are in A000007.

Examples

			Triangle begins :
1
-1, 1
-2, 1, 1
-4, 1, 2, 1
-8, 0, 4, 3, 1
-16, -4, 7, 8, 4, 1
-32, -16, 10, 19, 13, 5, 1
-64, -48, 8, 41, 37, 19, 6, 1
-128, -128, -16, 80, 96, 62, 26, 7, 1
		

Crossrefs

Formula

T(n,k)=2*T(n-1,k)+T(n-1,k-1)-T(n-2,k-1), for n>2.
T(n,0)=-2^(n-1) for n>0.
T(2*n,n)=A047781(n) for n>0.
T(n,1)=(4-n)*2^(n-3) for n>1.
G.f.: (1-3*x+x^2*y)/(1-2*x+x^2*y-x*y). - R. J. Mathar, Aug 11 2015

A272865 Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.

Original entry on oeis.org

4, 24, 160, 132, 936, 5700, 720, 5312, 33264, 198144, 3940, 29880, 190980, 1155600, 6823620, 21672, 167712, 1088856, 6670656, 39786120, 233908896, 119812, 941640, 6189540, 38300976, 230340740, 1363667256, 7997325700
Offset: 1

Author

Fabio Deelan Cunden, May 08 2016

Keywords

Comments

These numbers provide the covariances of power traces of the time-delay matrix when the scattering matrix belongs to the Dyson ensembles.
Relation with A047781 and A002002. See eq. (60) and (61) in Cunden et al., J. Phys. A: Math. Theor. 49, 18LT01 (2016).

Examples

			Triangle starts:
4;
24,   160;
132,  936,   5700;
720,  5312,  33264,  198144;
3940, 29880, 190980, 1155600, 6823620;
		

References

  • F. D. Cunden, "Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities", Phys. Rev. E 91, 060102(R) (2015).
  • F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, "Correlators for the Wigner-Smith time-delay matrix of chaotic cavities", J. Phys. A: Math. Theor. 49, 18LT01 (2016).
  • F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, "Moments of Random Matrices and Hypergeometric Orthogonal Polynomials", Commun. Math. Phys. 369, 1091-1145 (2019).

Crossrefs

Programs

  • Maple
    P := (n,k) -> simplify(n*hypergeom([1-k,k+1],[1],-1)*hypergeom([1-n,n+1],[2],-1)): seq(seq(4*(n*k)*(P(n,k)+P(k,n))/(n+k),k=1..n),n=1..7); # Peter Luschny, May 08 2016
  • Mathematica
    Clear["Global`*"];(*Wigner-Smith Covariance*)
    P[k_] := Sum[Binomial[k - 1, j] Binomial[k + j, j], {j, 0, k - 1}]
    Q[k_] := Sum[Binomial[k, j + 1] Binomial[k + j, j], {j, 0, k - 1}]
    a[k1_, k2_] := 4 (k1 k2)/(k1 + k2) (P[k1] Q[k2] + P[k2] Q[k1])
    L = 10; Table[a[k, l], {k, 1, L}, {l, 1, k}]

Formula

G.f.: ((x*y)/(x-y)^2)*((x*y-3(x+y)+1)/(sqrt(x^2-6x+1)*sqrt(y^2-6y+1))-1).
T(n,1)/4 = A050151(n) for n>=1. - Peter Luschny, May 08 2016

A344563 T(n, k) = binomial(n - 1, k - 1) * binomial(n, k) * 2^k, T(0, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 4, 4, 0, 6, 24, 8, 0, 8, 72, 96, 16, 0, 10, 160, 480, 320, 32, 0, 12, 300, 1600, 2400, 960, 64, 0, 14, 504, 4200, 11200, 10080, 2688, 128, 0, 16, 784, 9408, 39200, 62720, 37632, 7168, 256, 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512
Offset: 0

Author

Peter Luschny, May 30 2021

Keywords

Examples

			[0] 1;
[1] 0,  2;
[2] 0,  4,    4;
[3] 0,  6,   24,     8;
[4] 0,  8,   72,    96,     16;
[5] 0, 10,  160,   480,    320,     32;
[6] 0, 12,  300,  1600,   2400,    960,     64;
[7] 0, 14,  504,  4200,  11200,  10080,   2688,    128;
[8] 0, 16,  784,  9408,  39200,  62720,  37632,   7168,   256;
[9] 0, 18, 1152, 18816, 112896, 282240, 301056, 129024, 18432, 512.
		

Crossrefs

Row sums are A002003 with a(0) = 1, cf. also A047781.
The coefficients of the associated polynomials are in A103371.

Programs

  • Maple
    aRow := n -> seq(binomial(n-1, k-1)*binomial(n,k)*2^k, k=0..n):
    seq(print(aRow(n)), n=0..9);
  • Mathematica
    T[n_, k_] := Binomial[n-1, k-1] * Binomial[n, k] * 2^k;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
  • Python
    from math import comb
    def T(n, k):
        return comb(n-1, k-1)*comb(n, k)*2**k if k > 0 else k**n
    print([T(n, k) for n in range(10) for k in range(n+1)]) # Michael S. Branicky, May 30 2021
Previous Showing 11-20 of 20 results.