cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A362773 E.g.f. satisfies A(x) = exp( x * (1+x) * A(x)^2 ).

Original entry on oeis.org

1, 1, 7, 79, 1377, 32161, 947623, 33746511, 1410518273, 67714577857, 3672410420871, 222082390164559, 14817864737168353, 1081393797641087841, 85691459902207874471, 7327398378967991154511, 672511583942513406768897, 65943097191889528063033729
Offset: 0

Views

Author

Seiichi Manyama, May 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sqrt[LambertW[-2*x * (1+x)]/(-2*x * (1+x))], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 10 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*(1+x))/2)))

Formula

E.g.f.: exp( -LambertW(-2*x * (1+x))/2 ).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(k,n-k)/k!.
From Vaclav Kotesovec, Nov 10 2023: (Start)
E.g.f.: sqrt(LambertW(-2*x * (1+x))/(-2*x * (1+x))).
a(n) ~ sqrt(-sqrt(1 + 2*exp(-1)) + 1 + 2*exp(-1)) * 2^(n-1) * n^(n-1) / ((-1 + sqrt(1 + 2*exp(-1)))^n * exp(n-1)). (End)

A067147 Triangle of coefficients for expressing x^n in terms of Hermite polynomials.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 12, 0, 12, 0, 1, 0, 60, 0, 20, 0, 1, 120, 0, 180, 0, 30, 0, 1, 0, 840, 0, 420, 0, 42, 0, 1, 1680, 0, 3360, 0, 840, 0, 56, 0, 1, 0, 15120, 0, 10080, 0, 1512, 0, 72, 0, 1, 30240, 0, 75600, 0, 25200, 0, 2520, 0, 90, 0, 1
Offset: 0

Views

Author

Christian G. Bower, Jan 03 2002

Keywords

Comments

x^n = (1/2^n) * Sum_{k=0..n} a(n,k)*H_k(x).
These polynomials, H_n(x), are an Appell sequence, whose umbral compositional inverse sequence HI_n(x) consists of the same polynomials signed with the e.g.f. e^{-t^2} e^{xt}. Consequently, under umbral composition H_n(HI.(x)) = x^n = HI_n(H.(x)). Other differently scaled families of Hermite polynomials are A066325, A099174, and A060821. See Griffin et al. for a relation to the Catalan numbers and matrix integration. - Tom Copeland, Dec 27 2020

Examples

			Triangle begins with:
    1;
    0,   1;
    2,   0,   1;
    0,   6,   0,   1;
   12,   0,  12,   0,   1;
    0,  60,   0,  20,   0,   1;
  120,   0, 180,   0,  30,   0,   1;
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801. (Table 22.12)

Crossrefs

Row sums give A047974. Columns 0-2: A001813, A000407, A001814. Cf. A048854, A060821.

Programs

  • Magma
    [[Round(Factorial(n)*(1+(-1)^(n+k))/(2*Factorial(k)*Gamma((n-k+2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 09 2018
  • Maple
    T := proc(n, k) (n - k)/2; `if`(%::integer, (n!/k!)/%!, 0) end:
    for n from 0 to 11 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jan 05 2021
  • Mathematica
    Table[n!*(1+(-1)^(n+k))/(2*k!*Gamma[(n-k+2)/2]), {n,0,20}, {k,0,n}]// Flatten (* G. C. Greubel, Jun 09 2018 *)
  • PARI
    T(n, k) = round(n!*(1+(-1)^(n+k))/(2*k! *gamma((n-k+2)/2)))
    for(n=0,20, for(k=0,n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jun 09 2018
    
  • PARI
    {T(n,k) = if(k<0 || nMichael Somos, Jan 15 2020 */
    

Formula

E.g.f. (rel to x): A(x, y) = exp(x*y + x^2).
Sum_{ k>=0 } 2^k*k!*T(m, k)*T(n, k) = T(m+n, 0) = |A067994(m+n)|. - Philippe Deléham, Jul 02 2005
T(n, k) = 0 if n-k is odd; T(n, k) = n!/(k!*((n-k)/2)!) if n-k is even. - Philippe Deléham, Jul 02 2005
T(n, k) = n!/(k!*2^((n-k)/2)*((n-k)/2)!)*2^((n+k)/2)*(1+(-1)^(n+k))/2^(k+1).
T(n, k) = A001498((n+k)/2, (n-k)/2)2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1). - Paul Barry, Aug 28 2005
Exponential Riordan array (e^(x^2),x). - Paul Barry, Sep 12 2006
G.f.: 1/(1-x*y-2*x^2/(1-x*y-4*x^2/(1-x*y-6*x^2/(1-x*y-8*x^2/(1-... (continued fraction). - Paul Barry, Apr 10 2009
The n-th row entries may be obtained from D^n(exp(x*t)) evaluated at x = 0, where D is the operator sqrt(1+4*x)*d/dx. - Peter Bala, Dec 07 2011
As noted in the comments this is an Appell sequence of polynomials, so the lowering and raising operators defined by L H_n(x) = n H_{n-1}(x) and R H_{n}(x) = H_{n+1}(x) are L = D_x, the derivative, and R = D_t log[e^{t^2} e^{xt}] |{t = D_x} = x + 2 D_x, and the polynomials may also be generated by e^{-D^2} x^n = H_n(x). - _Tom Copeland, Dec 27 2020

A293669 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 7, 1, 1, 1, 3, 13, 25, 1, 1, 1, 3, 13, 49, 81, 1, 1, 1, 3, 13, 73, 261, 331, 1, 1, 1, 3, 13, 73, 381, 1531, 1303, 1, 1, 1, 3, 13, 73, 501, 2611, 9073, 5937, 1, 1, 1, 3, 13, 73, 501, 3331, 19993, 63393, 26785, 1, 1, 1, 3, 13, 73, 501, 4051, 27553, 165873, 465769, 133651, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,   1, ...
   1,  1,   1,   1,   1, ...
   1,  3,   3,   3,   3, ...
   1,  7,  13,  13,  13, ...
   1, 25,  49,  73,  73, ...
   1, 81, 261, 381, 501, ...
		

Crossrefs

Rows n=0-1 give A000012.
Main diagonal gives A000262.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(n-j, k)*binomial(n-1, j-1)*j!, j=1..min(n, k)))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);  # Alois P. Heinz, Nov 11 2020
  • Mathematica
    A[0, ] = 1; A[n /; n >= 0, k_ /; k >= 1] := A[n, k] = (n-1)!*Sum[j*A[n-j, k]/(n-j)!, {j, 1, Min[k, n]}]; A[, ] = 0;
    Table[A[n, d-n+1], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 13 2021 *)

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k,n)} j*A(n-j,k)/(n-j)!.

A088312 Number of sets of lists (cf. A000262) with even number of lists.

Original entry on oeis.org

1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536, 29668681, 413257790, 6238931821, 101415565836, 1765092183037, 32734873484250, 644215775792401, 13404753632014352, 293976795292186897, 6775966692145553526, 163735077313046119861, 4138498600079573989140
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

From Peter Bala, Mar 27 2022: (Start)
a(2*n) is odd ; a(2*n+1) is even.
If k is odd then k*(k-1) divides a(k). Consequently, 6 divides a(6*n+3), 10 divides a(10*n+5), 14 divides a(14*n+7), and in general, if k is odd then 2*k divides a(2*k*n + k).
For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
          b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
    A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # Peter Luschny, Dec 14 2022
  • Mathematica
    With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
    Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Emanuele Munarini, Sep 03 2017 *)
  • SageMath
    def A088312_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( cosh(x/(1-x)) ).egf_to_ogf().list()
    A088312_list(40) # G. C. Greubel, Dec 13 2022

Formula

E.g.f.: cosh(x/(1-x)).
a(n) = Sum_{k=1..floor(n/2)} n!/(2*k)!*binomial(n-1,2*k-1).
a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - Vaclav Kotesovec, Jul 04 2015
a(n+4) - 2*(2*n+5)*a(n+3) + (6*n^2+24*n+23)*a(n+2) - 2*(n+1)*(n+2)*(2*n+3)*a(n+1) + n*(n+1)^2*(n+2)*a(n) = 0. - Emanuele Munarini, Sep 03 2017
a(n) = (1/2)*(A000262(n) + (-1)^n*A111884(n)). - Peter Bala, Mar 27 2022
a(n) = (1/2)*(n-1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4) for n >= 1. - Peter Luschny, Dec 14 2022

Extensions

More terms from Vaclav Kotesovec, Jul 04 2015
a(0)-a(1) prepended by Alois P. Heinz, May 10 2016

A255819 E.g.f.: exp(Sum_{k>=1} k^3 * x^k).

Original entry on oeis.org

1, 1, 17, 211, 3049, 54221, 1131601, 26714647, 700868561, 20208794329, 634445325361, 21512122643771, 782497124407417, 30364699568650981, 1251108918727992689, 54512805637285532671, 2502891521610396838561, 120718449425308259052977, 6099522639316776103853521
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Comments

In general, if e.g.f. = exp(Sum_{k>=1} k^m * x^k) and m>0, then a(n) ~ (m+2)^(-1/2) * Gamma(m+2)^(1/(2*m+4)) * exp((m+2)/(m+1) * Gamma(m+2)^(1/(m+2)) * n^((m+1)/(m+2)) + zeta(-m) - n) * n^(n - 1/(2*m+4)).
It appears that the sequence a(n) taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k: if true, then the sequence a(n) taken modulo k would be periodic with period dividing k. - Peter Bala, Nov 14 2017
The above conjecture is true - see the Bala link. - Peter Bala, Jan 20 2018

Crossrefs

Programs

  • Mathematica
    nmax=20; CoefficientList[Series[Exp[Sum[k^3*x^k,{k,1,nmax}]],{x,0,nmax}],x] * Range[0,nmax]!
    nn = 20; Range[0, nn]! * CoefficientList[Series[Product[Exp[k^3*x^k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 21 2016 *)

Formula

E.g.f.: exp(x*(1 + 4*x + x^2)/(1-x)^4).
a(n) ~ 2^(3/10) * 3^(1/10) * 5^(-1/2) * n^(n-1/10) * exp(1/120 + 5 * 2^(-7/5) * 3^(1/5) * n^(4/5) - n).
a(n) = y(n)*n! where y(0)=1 and y(n)=(Sum_{k=0..n-1} (n-k)^4*y(k))/n for n>=1. - Benedict W. J. Irwin, Jun 02 2016
E.g.f.: Product_{k>=1} 1/(1 - x^k)^(J_4(k)/k), where J_4(k) is the Jordan function (A059377). - Ilya Gutkovskiy, May 25 2019

A002747 Logarithmic numbers.

Original entry on oeis.org

1, -2, 9, -28, 185, -846, 7777, -47384, 559953, -4264570, 61594841, -562923252, 9608795209, -102452031878, 2017846993905, -24588487650736, 548854382342177, -7524077221125234, 187708198761024553, -2859149344027588940, 78837443479630312281, -1320926996940746090302
Offset: 1

Views

Author

Keywords

Comments

abs(a(n)) is also the number of distinct routes starting from a point A and ending at a point B, without traversing any edge more than once, when there are n bi-directional edges connecting A and B. E.g., if there are 3 edges p, q and r from A to B, then the 9 routes starting from A and ending at B are p, q, r, pqr, prq, rpq, rqp, qpr and qrp. - Nikita Kiran, Sep 02 2022
Reducing the sequence modulo the odd integer 2*k + 1 results in a purely periodic sequence with period dividing 4*k + 2, For example, reduced modulo 5 the sequence becomes the purely periodic sequence [1, 3, 4, 2, 0, 4, 2, 1, 3, 0, 1, 3, 4, 2, 0, 4, 2, 1, 3, 0, ...] with period 10. - Peter Bala, Sep 12 2022

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*`if`(n<2, n, (n-1)*a(n-2)-(-1)^n) end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 10 2013
  • Mathematica
    egf = x/Exp[x]/(1-x^2); a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Jan 17 2014, after Vladeta Jovovic *)
    a[n_] := (Exp[-1] Gamma[1 + n, -1] - (-1)^n Exp[1] Gamma[1 + n, 1])/2;
    Table[a[n], {n, 1, 22}] (* Peter Luschny, Dec 18 2017 *)
  • PARI
    a(n) = (-1)^(n+1)*sum(k=0, n, binomial(n, k)*k!*(1-(-1)^k)/2); \\ Michel Marcus, Jan 13 2022

Formula

E.g.f.: x/exp(x)/(1-x^2). - Vladeta Jovovic, Feb 09 2003
a(n) = n*((n-1)*a(n-2)-(-1)^n). - Matthew Vandermast, Jun 30 2003
From Gerald McGarvey, Jun 06 2004: (Start)
For n odd, a(n) = n! * Sum_{i=0..n-1, i even} 1/i!.
For n even, a(n) = n! * Sum_{i=1..n-1, i odd} 1/i!.
For n odd, lim_{n->infinity} a(n)/n! = cosh(1).
For n even, lim_{n->infinity} a(n)/n! = sinh(1).
For n even, lim_{n->infinity} n*a(n)*a(n-1)/n!^2 = cosh(1)*sinh(1).
For signed values, Sum_{n>=1} a(n)/n!^2 = 0.
For unsigned values, Sum_{n>=1} a(n)/n!^2 = cosh(1)*sinh(1). (End)
a(n) = (-1)^(n-1)*Sum_{k=0..n} C(n, k)*k!*(1-(-1)^k)/2. - Paul Barry, Sep 14 2004
a(n) = (-1)^(n+1)*n*A087208(n-1). - R. J. Mathar, Jul 24 2015
a(n) = (exp(-1)*Gamma(1+n,-1) - (-1)^n*exp(1)*Gamma(1+n,1))/2 = (A000166(n) - (-1)^n*A000522(n))/2. - Peter Luschny, Dec 18 2017

Extensions

More terms from Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 09 2003

A122832 Exponential Riordan array (e^(x(1+x)),x).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 25, 28, 18, 4, 1, 81, 125, 70, 30, 5, 1, 331, 486, 375, 140, 45, 6, 1, 1303, 2317, 1701, 875, 245, 63, 7, 1, 5937, 10424, 9268, 4536, 1750, 392, 84, 8, 1, 26785, 53433, 46908, 27804, 10206, 3150, 588, 108, 9, 1
Offset: 0

Views

Author

Paul Barry, Sep 12 2006

Keywords

Comments

Row sums are A000898. Inverse is A122833. Product of A007318 and A067147.

Examples

			Triangle begins:
   1;
   1,   1;
   3,   2,  1;
   7,   9,  3,  1;
  25,  28, 18,  4, 1;
  81, 125, 70, 30, 5, 1;
  ...
From _Peter Bala_, May 14 2012: (Start)
T(3,1) = 9. The 9 ways to select a subset of {1,2,3} of size 1 and arrange the remaining elements into a set of lists (denoted by square brackets) of length 1 or 2 are:
{1}[2,3], {1}[3,2], {1}[2][3],
{2}[1,3], {2}[3,1], {2}[1][3],
{3}[1,2], {3}[2,1], {3}[1][2]. (End)
		

Crossrefs

A000898 (row sums), A047974 (column 0), A291632 (column 1), A122833 (inverse array).

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[E^(#(1+#))&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
  • PARI
    T(n,k) = (n!/k!)*sum(i=0, n-k, binomial(i,n-k-i)/i!); \\ Michel Marcus, Aug 28 2017

Formula

Number triangle T(n,k) = (n!/k!)*Sum_{i = 0..n-k} C(i,n-k-i)/i!.
From Peter Bala, May 14 2012: (Start)
Array is exp(S + S^2) where S is A132440 the infinitesimal generator for Pascal's triangle.
T(n,k) = binomial(n,k)*A047974(n-k).
So T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then arrange the remaining n-k elements into a set of lists of length 1 or 2. (End)
From Peter Bala, Oct 24 2023: (Start)
n-th row polynomial: R(n,x) = exp(D + D^2) (x^n) = exp(D^2) (1 + x)^n, where D denotes the derivative operator d/dx. Cf. A111062.
The sequence of polynomials defined by R(n,x-1) = exp(D^2) (x^n) begins [1, 1, 2 + x^2, 6*x + x^3, 12 + 12*x^2 + x^4, ...] and is related to the Hermite polynomials. See A059344. (End)

Extensions

More terms from Michel Marcus, Aug 28 2017

A361567 Expansion of e.g.f. exp(x^2/2 * (1+x)^2).

Original entry on oeis.org

1, 0, 1, 6, 15, 60, 555, 3150, 17745, 158760, 1399545, 10914750, 102920895, 1104323220, 11249313075, 119330961750, 1426411411425, 17429852840400, 213417453474225, 2791671804271350, 38524272522310575, 537569719902715500, 7732658753799054075
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Binomial[2*k,n-2*k]/(2^k * k!), {k,0,n/2}], {n,0,20}] (* Vaclav Kotesovec, Mar 25 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2/2*(1+x)^2)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/2*sum(j=2, i, j*binomial(2, j-2)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(2*k,n-2*k)/(2^k * k!).
a(0) = 1; a(n) = ((n-1)!/2) * Sum_{k=2..n} k * binomial(2,k-2) * a(n-k)/(n-k)!.
From Vaclav Kotesovec, Mar 25 2023: (Start)
a(n) = (n-1)*a(n-2) + 3*(n-2)*(n-1)*a(n-3) + 2*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 2^(n/4 - 1) * exp(1/128 - 3*2^(-29/4)*n^(1/4) - sqrt(n/2)/16 + 2^(-3/4)*n^(3/4) - 3*n/4) * n^(3*n/4). (End)

A375173 Expansion of e.g.f. exp( (1/(1 - 4*x)^(1/2) - 1)/2 ).

Original entry on oeis.org

1, 1, 7, 79, 1225, 24121, 575311, 16105447, 517380529, 18752175505, 756760712311, 33645775575391, 1633792107752377, 86022043957561609, 4880923725657950335, 296882100064302393271, 19269430292162925519841, 1329278651404123963041697
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2024

Keywords

Comments

For k >= 2, the difference a(n+k) - a(n) is divisible by k. It follows that for each k, the sequence formed by taking a(n) modulo k is periodic with period dividing k. For example, modulo 10 the sequence becomes [1, 1, 7, 9, 5, 1, 1, 7, 9, 5, ...], a purely periodic sequence of period 5. Cf. A047974. - Peter Bala, Feb 11 2025

Crossrefs

Programs

  • Mathematica
    Table[4^n * Sum[Abs[StirlingS1[n, k]] * BellB[k, 1/2] / 2^k, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 02 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1/(1-4*x)^(1/2)-1)/2)))

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * |Stirling1(n,k)| * A004211(k) = 4^n * Sum_{k=0..n} (1/2)^k * |Stirling1(n,k)| * Bell_k(1/2), where Bell_n(x) is n-th Bell polynomial.
From Vaclav Kotesovec, Aug 02 2024: (Start)
a(n) = 6*(2*n - 3)*a(n-1) - (48*n^2 - 192*n + 191)*a(n-2) + 32*(n-3)*(n-2)*(2*n - 5)*a(n-3).
a(n) ~ 2^(2*n - 1/6) * n^(n - 1/3) / (sqrt(3) * exp(n - 3*2^(-4/3)*n^(1/3) + 1/2)) * (1 - 31/(72*2^(2/3)*n^(1/3)) - 4607/(20736*2^(1/3)*n^(2/3))). (End)
a(n) = (1/exp(1/2)) * (-4)^n * n! * Sum_{k>=0} binomial(-k/2,n)/(2^k * k!). - Seiichi Manyama, Jan 18 2025

A377954 a(n) = n! * Sum_{k=0..n} binomial(k+2,n-k) / k!.

Original entry on oeis.org

1, 3, 9, 31, 117, 471, 2053, 9339, 45321, 227467, 1203681, 6556023, 37316029, 217944351, 1321360797, 8201728531, 52577120913, 344433580179, 2321103364921, 15960060854607, 112534486969221, 808555930139623, 5942117054417589, 44446333314841131
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(k+2, n-k)/k!);

Formula

E.g.f.: (1 + x)^2 * exp(x + x^2).
a(n) = -(n-4)*a(n-1) + 3*(n-1)*a(n-2) + 2*(n-1)*(n-2)*a(n-3) for n > 2.
a(n) = ((n^2-7*n+3)*a(n-1) + 2*(n-1)*(n^2-3*n-1)*a(n-2))/(n^2-5*n+3) for n > 1.
a(n) ~ n^(n/2 + 1) * 2^(n/2 - 3/2) / exp(1/8 - sqrt(n/2) + n/2) * (1 + 157/(48*sqrt(2*n))). - Vaclav Kotesovec, Nov 12 2024
Previous Showing 31-40 of 73 results. Next