cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 86 results. Next

A092748 Decimal expansion of Pi^(-8).

Original entry on oeis.org

0, 0, 0, 1, 0, 5, 3, 9, 0, 3, 9, 1, 6, 5, 3, 4, 9, 3, 6, 6, 6, 3, 3, 1, 7, 2, 8, 7, 2, 7, 2, 8, 1, 0, 1, 0, 0, 8, 7, 1, 9, 6, 2, 9, 8, 7, 0, 6, 7, 1, 5, 2, 3, 0, 7, 2, 6, 2, 2, 0, 6, 7, 2, 4, 0, 6, 9, 3, 6, 9, 4, 5, 8, 8, 0, 9, 1, 2, 2, 6, 8, 8, 3, 1, 1, 3, 9, 1, 7, 0, 3, 5, 3, 8, 4, 8, 1, 0, 3, 2, 0, 9, 5, 9, 8
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Examples

			0.000105390391653493666331...
		

Crossrefs

Programs

  • Mathematica
    PadLeft[#1, Abs@ #2 + Length@ #1] & @@ RealDigits[Pi^(-8), 10, 102] (* Michael De Vlieger, Nov 16 2017 *)
  • PARI
    { default(realprecision, 20080); x=10*Pi^-8; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b092748.txt", n, " ", d)); } \\ Iain Fox, Nov 16 2017
    
  • PARI
    1/Pi^8 \\ Michel Marcus, Nov 18 2017

A093204 Decimal expansion of Pi^(-1/3).

Original entry on oeis.org

6, 8, 2, 7, 8, 4, 0, 6, 3, 2, 5, 5, 2, 9, 5, 6, 8, 1, 4, 6, 7, 0, 2, 0, 8, 3, 3, 1, 5, 8, 1, 6, 4, 5, 9, 8, 1, 0, 8, 3, 6, 7, 5, 1, 5, 6, 3, 2, 4, 4, 8, 8, 0, 4, 0, 4, 2, 6, 8, 1, 5, 8, 3, 1, 1, 8, 8, 9, 9, 2, 2, 6, 4, 3, 3, 4, 0, 3, 9, 1, 8, 2, 3, 7, 6, 7, 3, 5, 0, 1, 9, 2, 2, 5, 9, 5, 5, 1, 9, 8, 6, 5, 6, 8, 5
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.682784063255295681467020833...
		

Crossrefs

Programs

Formula

1/A092039. - M. F. Hasler, Oct 07 2014

A098801 Decimal expansion of Pi + 1/Pi.

Original entry on oeis.org

3, 4, 5, 9, 9, 0, 2, 5, 3, 9, 7, 7, 3, 5, 8, 3, 9, 1, 0, 0, 0, 0, 4, 1, 0, 9, 1, 0, 0, 2, 4, 5, 3, 1, 6, 0, 8, 2, 6, 6, 0, 8, 8, 6, 9, 0, 8, 5, 6, 0, 1, 8, 7, 1, 8, 4, 7, 0, 2, 7, 9, 2, 8, 0, 4, 2, 5, 6, 1, 0, 0, 0, 1, 5, 5, 4, 6, 6, 2, 0, 6, 8, 8, 0, 8, 2, 6, 2, 4, 3, 0, 8, 7, 4, 6, 2, 3, 2, 3, 9, 8, 9, 4, 2, 9
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Nov 01 2004

Keywords

Examples

			3.45990253977358391000041091002453160826608869085601871847027928042561000155....
		

Crossrefs

Programs

Extensions

More terms from Ray Chandler, Nov 02 2004

A125560 Full solid angle of 4*Pi steradians (sr) in square degrees (degree^2).

Original entry on oeis.org

4, 1, 2, 5, 2, 9, 6, 1, 2, 4, 9, 4, 1, 9, 2, 7, 1, 0, 3, 1, 2, 9, 4, 6, 7, 1, 4, 6, 6, 1, 5, 5, 7, 2, 2, 6, 3, 9, 3, 3, 1, 9, 4, 0, 1, 7, 5, 9, 2, 6, 3, 1, 1, 5, 1, 5, 3, 9, 5, 3, 7, 5, 5, 8, 0, 0, 6, 6, 0, 4, 9, 9, 4, 6, 7, 9, 1, 5, 1, 7, 8, 9, 5, 3, 5, 7, 4, 9, 7, 6, 7, 7, 0, 1, 2, 7, 9, 9, 8, 7, 9, 8, 1, 4, 0
Offset: 5

Views

Author

Robert G. Wilson v, Dec 31 2006

Keywords

Comments

"A 35 mm camera with a standard 50 mm lens covers an area some 38 degrees x 27 degrees. Theoretically, one can cover the sky with about 40 photographs." [A Field Guide]
One sphere = 4*Pi steradians, a spherical right angle = 1/4 hemisphere = 1/8 sphere = Pi/2 steradian.

Examples

			41252.96124941927103129467146615572263933194017592631151539537558... deg^2.
= 148510660.979093757126608172781606015015949846333347214554233520... min^2.
= 534638377792.473752565578942201378165405741944680004997239524067... sec^2.
		

References

  • John A. Adam, Mathematics in Nature, Modeling Pattern in the Natural World, Princeton University Press, Princeton & Oxford, 2003, page 78.
  • Patrick Kelly, Editor, Observer's Handbook 2007, The Royal Astronomical Society of Canada, page 32.
  • Donald H. Menzel, A Field Guide to the Stars and Planets, Houghton Mifflin Co., Boston, MA, 1964, page 317.

Crossrefs

Programs

Formula

4Pi*(180/Pi)^2 = 10*A019694*A072097^2 = 129600/Pi = 129600*A049541.

Extensions

Definition changed to make it more rigorous by Stanislav Sykora, Nov 14 2013

A132698 Decimal expansion of 8/Pi.

Original entry on oeis.org

2, 5, 4, 6, 4, 7, 9, 0, 8, 9, 4, 7, 0, 3, 2, 5, 3, 7, 2, 3, 0, 2, 1, 4, 0, 2, 1, 3, 9, 6, 0, 2, 2, 9, 7, 9, 2, 5, 5, 1, 3, 5, 4, 3, 3, 1, 8, 4, 7, 3, 0, 3, 1, 7, 9, 9, 6, 2, 6, 7, 7, 5, 0, 4, 9, 4, 2, 3, 4, 8, 7, 6, 2, 1, 4, 7, 6, 2, 4, 5, 6, 1, 4, 4, 1, 8, 2, 0, 8, 4, 4, 2, 6, 0, 0, 4, 9, 3, 7, 5, 2, 9, 7, 1, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Examples

			2.5464790894703253723021402139602297925513543318473031799626775049423487621476....
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009

A132714 Decimal expansion of 24/Pi.

Original entry on oeis.org

7, 6, 3, 9, 4, 3, 7, 2, 6, 8, 4, 1, 0, 9, 7, 6, 1, 1, 6, 9, 0, 6, 4, 2, 0, 6, 4, 1, 8, 8, 0, 6, 8, 9, 3, 7, 7, 6, 5, 4, 0, 6, 2, 9, 9, 5, 5, 4, 1, 9, 0, 9, 5, 3, 9, 8, 8, 8, 0, 3, 2, 5, 1, 4, 8, 2, 7, 0, 4, 6, 2, 8, 6, 4, 4, 2, 8, 7, 3, 6, 8, 4, 3, 2, 5, 4, 6, 2, 5, 3, 2, 7, 8, 0, 1, 4, 8, 1, 2, 5, 8, 9, 1, 4, 9
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			=7.639437268410976116906420641880689377654062995541909539888032514827...
		

Crossrefs

Programs

Formula

24/Pi = Sum_{k>=0} ( (30*k+7)*C(2*k,k)^2*(Hypergeometric2F1[1/2 - k/2, -k/2, 1, 64])/(-256)^k ). - Alexander R. Povolotsky, Dec 20 2012
Another version of this identity is: Sum[(30*k+7) * Binomial[2k,k]^2 * (Sum[Binomial[k-m,m] * Binomial[k,m] * 16^m, {m,0,k/2}])/(256)^k, {k,0,infinity}]. - Alexander R. Povolotsky, Jan 25 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 03 2009

A179706 Decimal expansion of e^(1/Pi).

Original entry on oeis.org

1, 3, 7, 4, 8, 0, 2, 2, 2, 7, 4, 3, 9, 3, 5, 8, 6, 3, 1, 7, 8, 2, 8, 2, 1, 8, 7, 9, 2, 0, 9, 6, 5, 7, 2, 5, 6, 9, 8, 6, 3, 0, 7, 7, 5, 9, 4, 6, 7, 3, 6, 6, 6, 6, 5, 4, 4, 1, 7, 6, 0, 5, 0, 9, 3, 9, 7, 5, 2, 1, 1, 0, 5, 0, 6, 2, 6, 3, 6, 3, 4, 2, 8, 2, 6, 0, 8, 6, 7, 4, 0, 1, 1, 5, 3, 2, 8, 8, 7, 7, 9, 3, 3, 8, 3
Offset: 1

Views

Author

Bronte Harkaitz (bronteharkaitz(AT)yahoo.com), Jul 25 2010

Keywords

Examples

			e^(1/Pi) = 1.37480222743935863178...
1.3748022274... = 1 + A049541 + A092742/2! + A092743/3! + A092744/4! + A092745/5! + ... - _R. J. Mathar_, Jul 28 2010
		

Crossrefs

Cf. A001113 (decimal expansion of e, Euler's number), A000796 (decimal expansion of Pi).

Programs

Formula

log(this number) = A049541. - R. J. Mathar, Jul 28 2010

Extensions

Edited and extended by Klaus Brockhaus, Jul 29 2010
More digits from R. J. Mathar, Jul 28 2010

A232272 Decimal expansion of arctan(1/Pi).

Original entry on oeis.org

3, 0, 8, 1, 6, 9, 0, 7, 1, 1, 1, 5, 9, 8, 4, 9, 3, 5, 7, 8, 6, 9, 9, 9, 6, 0, 8, 0, 3, 4, 0, 5, 3, 0, 9, 8, 5, 8, 9, 6, 3, 7, 0, 2, 9, 2, 6, 3, 1, 6, 9, 3, 1, 3, 5, 1, 3, 6, 6, 2, 3, 4, 3, 9, 0, 1, 6, 8, 2, 9, 0, 0, 4, 5, 1, 3, 7, 0, 5, 3, 3, 9, 6, 8, 9
Offset: 0

Views

Author

Bruno Berselli, Nov 22 2013

Keywords

Examples

			0.30816907111598493578699960803405309858963702926316931351366234390168...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 35, page 338.

Crossrefs

Programs

Formula

Equals A019669 - A232273.
Equals Sum_{i>=0} (-1)^k/((1+2*k)*Pi^(1+2*k)).
From Wolfe Padawer, Feb 16 2023: (Start)
Equals arccot(Pi).
Equals arcsin(1/sqrt(Pi^2 + 1)).
Equals arccos(1/sqrt(1 + 1/Pi^2)). (End)

A337092 Decimal expansion of sqrt(40/Pi).

Original entry on oeis.org

3, 5, 6, 8, 2, 4, 8, 2, 3, 2, 3, 0, 5, 5, 4, 2, 2, 2, 9, 0, 7, 7, 9, 3, 2, 7, 4, 5, 1, 3, 0, 1, 6, 5, 1, 8, 0, 7, 8, 8, 4, 0, 5, 8, 4, 1, 1, 4, 3, 9, 0, 6, 9, 4, 3, 7, 1, 8, 5, 4, 7, 6, 9, 1, 6, 9, 1, 0, 6, 1, 5, 5, 9, 0, 6, 0, 8, 6, 1, 5, 5, 0, 5, 1, 9, 6
Offset: 1

Views

Author

Peter Munn, Aug 15 2020

Keywords

Comments

A gauge point marked c^1 or c_1 ("c" with a superscripted or subscripted "1") on slide rule calculating devices in the 20th century. The Pickworth reference notes its use "in calculating the contents of cylinders".

Examples

			3.568248232305...
		

References

  • C. N. Pickworth, The Slide Rule, 24th Ed., Pitman, London, 1945, p. 53, Gauge Points.

Crossrefs

Programs

  • Maple
    evalf(sqrt(40.0/Pi)) ; # R. J. Mathar, Sep 02 2020
  • Mathematica
    RealDigits[Sqrt[40/Pi], 10, 100][[1]] (* Amiram Eldar, Aug 15 2020 *)
  • PARI
    sqrt(40/Pi) \\ Michel Marcus, Aug 19 2020

Formula

Equals A010494/A002161 = 2*sqrt(10*A049541).

A069985 Numerator of b(n) = binomial(2n,n)^3*(42n+5)/2^(12n+4).

Original entry on oeis.org

5, 47, 2403, 16375, 7417375, 53760105, 3167882487, 23607123111, 90865711740375, 687802362944125, 41879801005939325, 320193409525211313, 157265345845813485371, 1210756529837794953125, 74775114531441956109375, 578623856286382884714375, 18377920150990405063058370375
Offset: 0

Views

Author

Benoit Cloitre, May 01 2002

Keywords

Examples

			Fractions begin with 5/16, 47/8192, 2403/33554432, 16375/17179869184, 7417375/562949953421312, 53760105/288230376151711744, ...
		

Crossrefs

Cf. A049541, A069986 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[Binomial[2 n, n]^3*(42 n + 5)/2^(12 n + 4)]; Array[a, 15, 0] (* Amiram Eldar, Apr 29 2022 *)

Formula

Sum_{n>=0} b(n) = 1/Pi (Ramanujan, 1914).
Previous Showing 31-40 of 86 results. Next