cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A131685 a(n) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^n + n) / n! takes integral values for all i>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 1, 1, 1, 1, 1, 11, 11, 11, 55, 143, 13, 91, 91, 91, 91, 91, 1001, 17017, 595595, 595595, 17017, 46189, 600457, 3002285, 3002285, 3002285, 3002285, 6605027, 3002285, 726869, 726869, 726869
Offset: 1

Views

Author

Alexander R. Povolotsky and Peter J. C. Moses, Sep 12 2007, revised Sep 17 2007

Keywords

Comments

It appears that none of the terms are divisible by 3. - Alexander R. Povolotsky, Oct 18 2007

Crossrefs

Cf. A000027 (for n=1), A064808 (n=2), A131509 (n=3), A129995 (n=4), A131675 (n=5), ..., A131680 (n=10).
See also A049614.

Programs

  • Maple
    # Maple program from Cyril Banderier, Sep 18 2007:
    List:=NULL: for n from 1 to 1000 do m:=1: #running till n=50 will last 2 min.
    for i from 1 to numtheory[pi](n) do div:=ithprime(i): d:=1: e:=0: oldmini:=-1:mini:=0:
    while oldmini<>mini do e:=e+1: #the last time consuming loop could be skipped by proving e<=floor(ln(n)/ln(div)):
    d:=d*div;for x from 0 to d-1 do [seq((x &^k mod d)+k mod d,k=1..n)]:contrib[d,x]:=nops(select(has,%,0)): od:
    L:=seq(add(contrib[div^j,x mod div^j],j=1..e),x=0..div^e-1); oldmini:=mini: mini:=min(L): od:
    if mini
    				

Extensions

More terms from Cyril Banderier, Sep 17 2007

A135291 Product of the nonzero exponents in the prime factorization of n!.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 8, 8, 14, 28, 64, 64, 100, 100, 220, 396, 540, 540, 768, 768, 1152, 1944, 4104, 4104, 5280, 7920, 16560, 21528, 31200, 31200, 40768, 40768, 48608, 78120, 161280, 230400, 277440, 277440, 571200, 907200, 1108080, 1108080, 1440504, 1440504, 2019168
Offset: 0

Views

Author

Leroy Quet, Dec 03 2007

Keywords

Comments

a(n) = A005361(n!). For n >= 2, a(n) = the number of positive divisors of n! which themselves are each divisible by every prime <= n. For p = any prime, a(p) = a(p-1). a(0)=a(1)=1 because the product of the exponents is over the empty set.

Examples

			6! = 720 has a prime factorization of 2^4 * 3^2 * 5^1. So a(6) = 4*2*1 = 8.
Also, 720 is divisible by a(6)=8 positive divisors which themselves are each divisible by every prime <= 6 (i.e., are each divisible by 2*3*5 = 30): 30, 60, 90, 120, 180, 240, 360, 720.
		

Crossrefs

Programs

  • Maple
    A005361 := proc(n) mul( op(2,i),i=ifactors(n)[2]) ; end: A135291 := proc(n) A005361(n!) ; end: seq(A135291(n),n=0..50) ; # R. J. Mathar, Dec 12 2007
    # second Maple program:
    b:= proc(n) option remember; `if`(n<1, 1,
          b(n-1)+add(i[2]*x^i[1], i=ifactors(n)[2]))
        end:
    a:= n-> mul(i, i=coeffs(b(n))):
    seq(a(n), n=0..44);  # Alois P. Heinz, Jun 02 2025
  • Mathematica
    Table[Product[FactorInteger[n! ][[i, 2]], {i, 1, Length[FactorInteger[n! ]]}], {n, 0, 50}] (* Stefan Steinerberger, Dec 05 2007 *)
    Table[Times@@Transpose[FactorInteger[n!]][[2]],{n,0,50}] (* Harvey P. Dale, Aug 16 2011 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=my(s=1); forprime(p=2,n\2, s*=valp(n,p)); s \\ Charles R Greathouse IV, Oct 09 2016
    
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A135291(n): return prod(sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values()) # Chai Wah Wu, Jun 02 2025

Formula

a(n) = A000005(A049614(n)). - Ridouane Oudra, Sep 02 2019
a(n) = exp((n/log(n)) * (Sum_{k=0..M} e_k/log(n)^k) + O(n/log(n)^(M+2))) for any given integer M >= 0, where e_k = k! * Sum_{j=0..k} (1/j!) * Sum_{s>=1} (log(s+1)^j/(s+1))*log(1+1/s) are constants (e_0 = A085361) (De Koninck and Verreault, 2024, p. 54, Theorem 4.4). - Amiram Eldar, Dec 10 2024

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Dec 05 2007

A092435 Prime factorials divided by their corresponding primorials.

Original entry on oeis.org

1, 1, 4, 24, 17280, 207360, 696729600, 12541132800, 115880067072000, 1366643159020339200000, 40999294770610176000000, 1854768736099424576471040000000, 109950690675973888893203251200000000, 4617929008390903333514536550400000000, 420600974084243475616503989010432000000000
Offset: 1

Views

Author

Don Willard (dwillard(AT)prairie.cc.il.us), Mar 23 2004

Keywords

Examples

			E.g., 2 factorial divided by 2 primorial is 1; 3 factorial is 6, divided by 3 primorial (3*2=6) is also 1; 5 factorial is 120, divided by 5 primorial (5*3*2=30) is 4 and so forth.
		

Crossrefs

Subsequence of A036691. - Chayim Lowen, Jul 23 2015

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          a(n-1)*mul(i, i=ithprime(n-1)+1..ithprime(n)-1))
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Jan 15 2025
  • Mathematica
    Table[ Prime[n]! / Times @@ Prime[ Range[ n]], {n, 13}] (* Robert G. Wilson v, Mar 25 2004 *)
  • PARI
    a(n)=prime(n)!/prod(i=1,n,prime(i)) \\ Ralf Stephan, Dec 21 2013

Formula

p!/p# = A039716/A002110.
Partial products of A061214. - Lekraj Beedassy, Nov 06 2006
From Chayim Lowen, Jul 23 - Aug 05 2015: (Start)
a(n) = A036691(A065890(n)).
a(n) = Product_{k=1..n} prime(k)^(A085604(prime(n),k)-1).
a(n) = A049614(prime(n)).
a(n) = Product_{k=1..prime(n)} k^A066247(k). (End)

Extensions

Edited by Robert G. Wilson v, Mar 25 2004
More terms from Michel Marcus, Jan 15 2025

A140293 Numbers k such that k!/k#-1 is prime, where k# is the primorial function (A034386).

Original entry on oeis.org

4, 5, 6, 7, 8, 16, 17, 21, 34, 39, 45, 50, 72, 73, 76, 133, 164, 202, 216, 221, 280, 281, 496, 605, 2532, 2967, 3337, 8711, 10977, 13724, 15250, 18160, 20943, 33684, 41400
Offset: 1

Views

Author

Cino Hilliard, May 25 2008

Keywords

Comments

a(31) > 14000. - Giovanni Resta, Apr 02 2013
a(36) > 50000. - Roger Karpin, Jul 07 2015
If k is a prime and k is a member, then k-1 is also a member, and k!/k# - 1 is the same as (k-1)!/(k-1)# - 1. See A049421. - Jeppe Stig Nielsen, Aug 12 2024

Examples

			7!/7# = 5040/210 = 24. 24 - 1 = 23, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[16], PrimeQ[#!/(Times@@Prime[Range[PrimePi[#]]]) - 1] &] (* Alonso del Arte, Nov 28 2014 *)
  • PARI
    g(n) = for(x=4,n,y=x!/primorial(x)-1;z=nextprime(y+1); if(ispseudoprime(y),print1(x",")))

Formula

n such that n!/n# - 1 is prime, where n# is the primorial function n# = product(i = 1 .. pi(n), prime(i)), where pi(n) is the prime counting function.

Extensions

a(18)-a(27) from Giovanni Resta, Mar 28 2013
a(28)-a(30) from Giovanni Resta, Apr 02 2013
a(31) from Roger Karpin, Nov 28 2014
a(32)-a(33) from Daniel Heuer, ca Aug 2000
a(34)-a(35) from Serge Batalov, Feb 09 2015

A140315 Numbers k such that k!/k#-1 and k!/k#+1 are a twin prime pair.

Original entry on oeis.org

4, 5, 8, 34, 280, 281
Offset: 1

Views

Author

Cino Hilliard, May 25 2008

Keywords

Comments

4,5 and 280,281 result in the same respective twin prime pairs. Using gmp, testing n < 4000, the last 3-prp found was the 8897 digit 3-prp, 3337!/3337#-1.

Examples

			8!/8#-1 = 191, 8!/8#-1 = 193. 191 and 193 form a twin prime pair.
		

Crossrefs

Programs

  • Mathematica
    Primorial[n_] := Product[Prime[i], {i, 1, PrimePi[n]}];
    Select[Range[
      1000], (p = (#! / Primorial[#]);
    PrimeQ[p + 1] && PrimeQ[p - 1]) &] (* Robert Price, Oct 11 2019 *)
  • PARI
    g(n) = for(x=1,n,y=x!/primorial(x)-1;z=nextprime(y+1); if(ispseudoprime(y)&&z-y==2,print1(x", ")))
    primorial(n) = { local(p1,x); if(n==0||n==1,return(1)); p1=1; forprime(x=2,n,p1*=x); return(p1) }

Formula

n# is the primorial function A034386(n).
A140293 INTERSECT A140294. - R. J. Mathar, Feb 27 2012

Extensions

Offset corrected by Amiram Eldar, Jul 18 2025

A131683 a(n) = 4*(n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)*(n^4 + 4!)/4!.

Original entry on oeis.org

48, 175, 1680, 25410, 294000, 2295513, 12991440, 57550100, 211281840, 669529875, 1885734928, 4823347830, 11387316720, 25126129245, 52326450000, 103659864168, 196585724720, 358766207415, 632810010000, 1082730294250, 1802581066608, 2927824829985, 4650083620560
Offset: 0

Views

Author

Keywords

Crossrefs

See A049614.

Programs

  • Mathematica
    Table[((n+1)(n^2+2)(n^3+6)(n^4+24))/6,{n,0,30}] (* or *) LinearRecurrence[ {11,-55,165,-330,462,-462,330,-165,55,-11,1},{48,175,1680,25410,294000,2295513,12991440,57550100,211281840,669529875,1885734928},30] (* Harvey P. Dale, Mar 23 2015 *)

Formula

G.f.: -(80*x^9 +7205*x^8 +61625*x^7 +213873*x^6 +217437*x^5 +93855*x^4 +8635*x^3 +2395*x^2 -353*x +48) / (x -1)^11. - Colin Barker, Aug 08 2013
a(0)=48, a(1)=175, a(2)=1680, a(3)=25410, a(4)=294000, a(5)=2295513, a(6)=12991440, a(7)=57550100, a(8)=211281840, a(9)=669529875, a(10)=1885734928, a(n)=11*a(n-1)- 55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)- 165*a(n-8)+ 55*a(n-9)- 11*a(n-10)+a(n-11). - Harvey P. Dale, Mar 23 2015

A066332 a(1)=1; for n > 0, a(n+1) = rad(a(n))*n where rad=A007947.

Original entry on oeis.org

1, 1, 2, 6, 24, 30, 180, 210, 1680, 1890, 2100, 2310, 27720, 30030, 420420, 450450, 480480, 510510, 9189180, 9699690, 193993800, 203693490, 213393180, 223092870, 5354228880, 5577321750, 5800414620, 6023507490, 6246600360, 6469693230, 194090796900, 200560490130
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@n); a[n_] := (n -1)rad[a[n -1]]; a[1] = 1; Array[a, 30] (* Robert G. Wilson v, Dec 14 2016 and modified Dec 24 2016 *)
  • PARI
    a(n) = if(n==1, 1, (n-1)*prod(k=1, primepi(n-2), prime(k))); \\ Daniel Suteu, Dec 14 2016
    
  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    a(n) = if (n==1, 1, (n-1)*rad(a(n-1))); \\ Michel Marcus, Dec 21 2016

Formula

a(1)=1; for n > 1, a(n) = (n-1) * Product_{p prime < (n-1)} p. - Pedro Caceres, Mar 12 2018
a(A008864(n)) = A002110(n). - Michel Marcus, Mar 17 2018

Extensions

More terms from Michel Marcus, Mar 17 2018

A073840 Product of the composite numbers between n and 2n (both inclusive).

Original entry on oeis.org

1, 4, 24, 192, 4320, 51840, 120960, 29030400, 65318400, 145152000, 6706022400, 160944537600, 8717829120000, 6590678814720000, 14122883174400000, 30128817438720000, 2112783322890240000, 2662106986841702400000
Offset: 1

Views

Author

Amarnath Murthy, Aug 13 2002

Keywords

Comments

a(n) is divisible by central binomial coefficients, A001405[n]

Examples

			a(6) = 6*8*9*10*12 = 51840.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 50 do l := 1:for j from n to 2*n do if not isprime(j) then l := l*j:fi:od:a[n] := l:od:seq(a[j],j=1..50);
  • Mathematica
    cs[x_] := Flatten[Position[Table[PrimeQ[j], {j, x, 2*x}], False]]+x-1; prcs[x_] := Apply[Times, cs[x]]; Table[prcs[w], {w, 1, 25}]
  • PARI
    a(n)=prod(i=n,2*n,i^if(isprime(i),0,1))

Formula

a(n)=A049614(2n)/A049614(n-1)

Extensions

More terms from Sascha Kurz and Labos Elemer, Aug 14 2002

A117684 Row sums of A117683.

Original entry on oeis.org

1, 2, 3, 13, 11, 49, 27, 141, 523, 3081, 923, 5509, 1371, 7617, 24391, 84933, 14795, 110329, 20859, 142101, 499843, 1858209, 241211, 2312077, 8417451, 70482153, 251680159, 935093181, 95916299, 1102272481, 131510523, 1270525629, 4572551611, 17189356473
Offset: 1

Views

Author

Roger L. Bagula, Apr 12 2006

Keywords

Crossrefs

Cf. A117683.

Programs

  • Magma
    A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >;
    [(&+[Binomial(n,k)*A034386(k)*A034386(n-k)/A034386(n): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Jul 21 2023
    
  • Mathematica
    f[n_]:= If[PrimeQ[n], 1, n];
    cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
    T[n_, k_]:= T[n, k]= cf[n]/(cf[k]*cf[n-k]);
    a[n_]:= a[n]= Sum[T[n,k], {k,n}];
    Table[a[n], {n,40}]
  • SageMath
    @CachedFunction
    def A034386(n): return product(nth_prime(j) for j in range(1, 1+prime_pi(n)))
    def A117684(n): return sum(binomial(n,k)*A034386(k)*A034386(n-k)/A034386(n) for k in range(1,n+1))
    [A117684(n) for n in range(1,41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = Sum_{k=1..n} A117683(n,k).

Extensions

Description simplified, offset corrected by the Assoc. Eds. of the OEIS, Jun 27 2010

A117753 Triangle T(n, k) = f(n, 1 + (n mod 3))*f(k, 1 + (k mod 3)) mod n!, read by rows (see formula for f(n, k)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 6, 6, 12, 6, 12, 0, 0, 0, 0, 0, 0, 24, 24, 48, 24, 144, 0, 576, 210, 210, 420, 210, 1260, 0, 0, 3780, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1728, 1728, 3456, 1728, 10368, 207360, 41472, 0, 0, 82944, 210, 210, 420, 210, 1260, 25200, 5040, 44100, 1209600, 362880, 44100
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2006

Keywords

Examples

			Triangle begins as:
     0;
     0,    0;
     0,    0,    0;
     1,    1,    2,    1;
     6,    6,   12,    6,    12;
     0,    0,    0,    0,     0,      0;
    24,   24,   48,   24,   144,      0,   576;
   210,  210,  420,  210,  1260,      0,     0,  3780;
     0,    0,    0,    0,     0,      0,     0,     0,   0;
  1728, 1728, 3456, 1728, 10368, 207360, 41472,     0,   0, 82944;
		

Crossrefs

Programs

  • Magma
    A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
    A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1,n)) >;
    function f(n,k)
      if k eq 1 then return A049614(n);
      elif k eq 2 then return A034386(n);
      else return Factorial(n);
      end if;
    end function;
    A117753:= func< n,k | Floor( f( n, 1 + (n mod 3) )*f( k, 1 + (k mod 3)) ) mod Factorial(n) >;
    [A117753(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2023
    
  • Mathematica
    f[n_]:= If[PrimeQ[n], 1, n]; cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
    g[n_]:= If[PrimeQ[n], n, 1]; p[n_]:= p[n]= If[n==0, 1, g[n]*p[n-1]];  (* A034386 *)
    f[n_, 1]= cf[n]; f[n_, 2]= p[n]; f[n_, 3]= n!;
    Table[Mod[f[n, 1 + Mod[n, 3]]*f[m, 1 + Mod[m, 3]], n!], {n, 0, 10}, {m, 0, n}]//Flatten
  • SageMath
    from sympy import primorial
    def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n)))
    def A034386(n): return 1 if n == 0 else primorial(n, nth=False)
    def f(n,m):
        if m==1: return A049614(n)
        elif m==2: return A034386(n)
        else: return factorial(n)
    def A117753(n, k): return (f(n, 1+(n%3))*f(k, 1+(k%3)))%factorial(n)
    flatten([[A117753(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2023

Formula

T(n, k) = f(n, 1 + (n mod 3))*f(k, 1 + (k mod 3)) mod n!, where f(n, 1) = A049614(n), f(n, 2) = A034386(n), and f(n, 3) = n!.

Extensions

Edited by G. C. Greubel, Jul 21 2023
Previous Showing 11-20 of 32 results. Next