A131685
a(n) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^n + n) / n! takes integral values for all i>=0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 1, 1, 1, 1, 1, 11, 11, 11, 55, 143, 13, 91, 91, 91, 91, 91, 1001, 17017, 595595, 595595, 17017, 46189, 600457, 3002285, 3002285, 3002285, 3002285, 6605027, 3002285, 726869, 726869, 726869
Offset: 1
-
# Maple program from Cyril Banderier, Sep 18 2007:
List:=NULL: for n from 1 to 1000 do m:=1: #running till n=50 will last 2 min.
for i from 1 to numtheory[pi](n) do div:=ithprime(i): d:=1: e:=0: oldmini:=-1:mini:=0:
while oldmini<>mini do e:=e+1: #the last time consuming loop could be skipped by proving e<=floor(ln(n)/ln(div)):
d:=d*div;for x from 0 to d-1 do [seq((x &^k mod d)+k mod d,k=1..n)]:contrib[d,x]:=nops(select(has,%,0)): od:
L:=seq(add(contrib[div^j,x mod div^j],j=1..e),x=0..div^e-1); oldmini:=mini: mini:=min(L): od:
if mini
A135291
Product of the nonzero exponents in the prime factorization of n!.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 8, 8, 14, 28, 64, 64, 100, 100, 220, 396, 540, 540, 768, 768, 1152, 1944, 4104, 4104, 5280, 7920, 16560, 21528, 31200, 31200, 40768, 40768, 48608, 78120, 161280, 230400, 277440, 277440, 571200, 907200, 1108080, 1108080, 1440504, 1440504, 2019168
Offset: 0
6! = 720 has a prime factorization of 2^4 * 3^2 * 5^1. So a(6) = 4*2*1 = 8.
Also, 720 is divisible by a(6)=8 positive divisors which themselves are each divisible by every prime <= 6 (i.e., are each divisible by 2*3*5 = 30): 30, 60, 90, 120, 180, 240, 360, 720.
-
A005361 := proc(n) mul( op(2,i),i=ifactors(n)[2]) ; end: A135291 := proc(n) A005361(n!) ; end: seq(A135291(n),n=0..50) ; # R. J. Mathar, Dec 12 2007
# second Maple program:
b:= proc(n) option remember; `if`(n<1, 1,
b(n-1)+add(i[2]*x^i[1], i=ifactors(n)[2]))
end:
a:= n-> mul(i, i=coeffs(b(n))):
seq(a(n), n=0..44); # Alois P. Heinz, Jun 02 2025
-
Table[Product[FactorInteger[n! ][[i, 2]], {i, 1, Length[FactorInteger[n! ]]}], {n, 0, 50}] (* Stefan Steinerberger, Dec 05 2007 *)
Table[Times@@Transpose[FactorInteger[n!]][[2]],{n,0,50}] (* Harvey P. Dale, Aug 16 2011 *)
-
valp(n,p)=my(s); while(n\=p, s+=n); s
a(n)=my(s=1); forprime(p=2,n\2, s*=valp(n,p)); s \\ Charles R Greathouse IV, Oct 09 2016
-
from math import prod
from collections import Counter
from sympy import factorint
def A135291(n): return prod(sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values()) # Chai Wah Wu, Jun 02 2025
A092435
Prime factorials divided by their corresponding primorials.
Original entry on oeis.org
1, 1, 4, 24, 17280, 207360, 696729600, 12541132800, 115880067072000, 1366643159020339200000, 40999294770610176000000, 1854768736099424576471040000000, 109950690675973888893203251200000000, 4617929008390903333514536550400000000, 420600974084243475616503989010432000000000
Offset: 1
Don Willard (dwillard(AT)prairie.cc.il.us), Mar 23 2004
E.g., 2 factorial divided by 2 primorial is 1; 3 factorial is 6, divided by 3 primorial (3*2=6) is also 1; 5 factorial is 120, divided by 5 primorial (5*3*2=30) is 4 and so forth.
-
a:= proc(n) option remember; `if`(n<2, 1,
a(n-1)*mul(i, i=ithprime(n-1)+1..ithprime(n)-1))
end:
seq(a(n), n=1..15); # Alois P. Heinz, Jan 15 2025
-
Table[ Prime[n]! / Times @@ Prime[ Range[ n]], {n, 13}] (* Robert G. Wilson v, Mar 25 2004 *)
-
a(n)=prime(n)!/prod(i=1,n,prime(i)) \\ Ralf Stephan, Dec 21 2013
A140293
Numbers k such that k!/k#-1 is prime, where k# is the primorial function (A034386).
Original entry on oeis.org
4, 5, 6, 7, 8, 16, 17, 21, 34, 39, 45, 50, 72, 73, 76, 133, 164, 202, 216, 221, 280, 281, 496, 605, 2532, 2967, 3337, 8711, 10977, 13724, 15250, 18160, 20943, 33684, 41400
Offset: 1
7!/7# = 5040/210 = 24. 24 - 1 = 23, which is prime.
-
Select[Range[16], PrimeQ[#!/(Times@@Prime[Range[PrimePi[#]]]) - 1] &] (* Alonso del Arte, Nov 28 2014 *)
-
g(n) = for(x=4,n,y=x!/primorial(x)-1;z=nextprime(y+1); if(ispseudoprime(y),print1(x",")))
a(32)-a(33) from Daniel Heuer, ca Aug 2000
A140315
Numbers k such that k!/k#-1 and k!/k#+1 are a twin prime pair.
Original entry on oeis.org
4, 5, 8, 34, 280, 281
Offset: 1
8!/8#-1 = 191, 8!/8#-1 = 193. 191 and 193 form a twin prime pair.
-
Primorial[n_] := Product[Prime[i], {i, 1, PrimePi[n]}];
Select[Range[
1000], (p = (#! / Primorial[#]);
PrimeQ[p + 1] && PrimeQ[p - 1]) &] (* Robert Price, Oct 11 2019 *)
-
g(n) = for(x=1,n,y=x!/primorial(x)-1;z=nextprime(y+1); if(ispseudoprime(y)&&z-y==2,print1(x", ")))
primorial(n) = { local(p1,x); if(n==0||n==1,return(1)); p1=1; forprime(x=2,n,p1*=x); return(p1) }
A131683
a(n) = 4*(n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)*(n^4 + 4!)/4!.
Original entry on oeis.org
48, 175, 1680, 25410, 294000, 2295513, 12991440, 57550100, 211281840, 669529875, 1885734928, 4823347830, 11387316720, 25126129245, 52326450000, 103659864168, 196585724720, 358766207415, 632810010000, 1082730294250, 1802581066608, 2927824829985, 4650083620560
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
Table[((n+1)(n^2+2)(n^3+6)(n^4+24))/6,{n,0,30}] (* or *) LinearRecurrence[ {11,-55,165,-330,462,-462,330,-165,55,-11,1},{48,175,1680,25410,294000,2295513,12991440,57550100,211281840,669529875,1885734928},30] (* Harvey P. Dale, Mar 23 2015 *)
A066332
a(1)=1; for n > 0, a(n+1) = rad(a(n))*n where rad=A007947.
Original entry on oeis.org
1, 1, 2, 6, 24, 30, 180, 210, 1680, 1890, 2100, 2310, 27720, 30030, 420420, 450450, 480480, 510510, 9189180, 9699690, 193993800, 203693490, 213393180, 223092870, 5354228880, 5577321750, 5800414620, 6023507490, 6246600360, 6469693230, 194090796900, 200560490130
Offset: 1
-
rad[n_] := Times @@ (First@# & /@ FactorInteger@n); a[n_] := (n -1)rad[a[n -1]]; a[1] = 1; Array[a, 30] (* Robert G. Wilson v, Dec 14 2016 and modified Dec 24 2016 *)
-
a(n) = if(n==1, 1, (n-1)*prod(k=1, primepi(n-2), prime(k))); \\ Daniel Suteu, Dec 14 2016
-
rad(n) = factorback(factorint(n)[, 1]);
a(n) = if (n==1, 1, (n-1)*rad(a(n-1))); \\ Michel Marcus, Dec 21 2016
A073840
Product of the composite numbers between n and 2n (both inclusive).
Original entry on oeis.org
1, 4, 24, 192, 4320, 51840, 120960, 29030400, 65318400, 145152000, 6706022400, 160944537600, 8717829120000, 6590678814720000, 14122883174400000, 30128817438720000, 2112783322890240000, 2662106986841702400000
Offset: 1
a(6) = 6*8*9*10*12 = 51840.
-
for n from 1 to 50 do l := 1:for j from n to 2*n do if not isprime(j) then l := l*j:fi:od:a[n] := l:od:seq(a[j],j=1..50);
-
cs[x_] := Flatten[Position[Table[PrimeQ[j], {j, x, 2*x}], False]]+x-1; prcs[x_] := Apply[Times, cs[x]]; Table[prcs[w], {w, 1, 25}]
-
a(n)=prod(i=n,2*n,i^if(isprime(i),0,1))
Original entry on oeis.org
1, 2, 3, 13, 11, 49, 27, 141, 523, 3081, 923, 5509, 1371, 7617, 24391, 84933, 14795, 110329, 20859, 142101, 499843, 1858209, 241211, 2312077, 8417451, 70482153, 251680159, 935093181, 95916299, 1102272481, 131510523, 1270525629, 4572551611, 17189356473
Offset: 1
-
A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >;
[(&+[Binomial(n,k)*A034386(k)*A034386(n-k)/A034386(n): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Jul 21 2023
-
f[n_]:= If[PrimeQ[n], 1, n];
cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
T[n_, k_]:= T[n, k]= cf[n]/(cf[k]*cf[n-k]);
a[n_]:= a[n]= Sum[T[n,k], {k,n}];
Table[a[n], {n,40}]
-
@CachedFunction
def A034386(n): return product(nth_prime(j) for j in range(1, 1+prime_pi(n)))
def A117684(n): return sum(binomial(n,k)*A034386(k)*A034386(n-k)/A034386(n) for k in range(1,n+1))
[A117684(n) for n in range(1,41)] # G. C. Greubel, Jul 21 2023
Description simplified, offset corrected by the Assoc. Eds. of the OEIS, Jun 27 2010
A117753
Triangle T(n, k) = f(n, 1 + (n mod 3))*f(k, 1 + (k mod 3)) mod n!, read by rows (see formula for f(n, k)).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 6, 6, 12, 6, 12, 0, 0, 0, 0, 0, 0, 24, 24, 48, 24, 144, 0, 576, 210, 210, 420, 210, 1260, 0, 0, 3780, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1728, 1728, 3456, 1728, 10368, 207360, 41472, 0, 0, 82944, 210, 210, 420, 210, 1260, 25200, 5040, 44100, 1209600, 362880, 44100
Offset: 0
Triangle begins as:
0;
0, 0;
0, 0, 0;
1, 1, 2, 1;
6, 6, 12, 6, 12;
0, 0, 0, 0, 0, 0;
24, 24, 48, 24, 144, 0, 576;
210, 210, 420, 210, 1260, 0, 0, 3780;
0, 0, 0, 0, 0, 0, 0, 0, 0;
1728, 1728, 3456, 1728, 10368, 207360, 41472, 0, 0, 82944;
-
A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1,n)) >;
function f(n,k)
if k eq 1 then return A049614(n);
elif k eq 2 then return A034386(n);
else return Factorial(n);
end if;
end function;
A117753:= func< n,k | Floor( f( n, 1 + (n mod 3) )*f( k, 1 + (k mod 3)) ) mod Factorial(n) >;
[A117753(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2023
-
f[n_]:= If[PrimeQ[n], 1, n]; cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
g[n_]:= If[PrimeQ[n], n, 1]; p[n_]:= p[n]= If[n==0, 1, g[n]*p[n-1]]; (* A034386 *)
f[n_, 1]= cf[n]; f[n_, 2]= p[n]; f[n_, 3]= n!;
Table[Mod[f[n, 1 + Mod[n, 3]]*f[m, 1 + Mod[m, 3]], n!], {n, 0, 10}, {m, 0, n}]//Flatten
-
from sympy import primorial
def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n)))
def A034386(n): return 1 if n == 0 else primorial(n, nth=False)
def f(n,m):
if m==1: return A049614(n)
elif m==2: return A034386(n)
else: return factorial(n)
def A117753(n, k): return (f(n, 1+(n%3))*f(k, 1+(k%3)))%factorial(n)
flatten([[A117753(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2023
Comments