cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A345194 Number of alternating patterns of length n.

Original entry on oeis.org

1, 1, 2, 6, 22, 102, 562, 3618, 26586, 219798, 2018686, 20393790, 224750298, 2683250082, 34498833434, 475237879950, 6983085189454, 109021986683046, 1802213242949602, 31447143854808378, 577609702827987882, 11139837273501641502, 225075546284489412854
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). An alternating pattern is necessarily an anti-run (A005649).
The version with twins (A344605) is identical to this sequence except with a(2) = 3 instead of 2.
From Gus Wiseman, Jan 16 2022: (Start)
Conjecture: Also the number of weakly up/down patterns of length n, where a sequence is weakly up/down if it is alternately weakly increasing and weakly decreasing, starting with an increase. For example, the a(0) = 1 through a(3) = 6 weakly up/down patterns are:
() (1) (1,1) (1,1,1)
(2,1) (1,1,2)
(2,1,1)
(2,1,2)
(2,1,3)
(3,1,2)
(End)

Examples

			The a(0) = 1 through a(3) = 6 alternating patterns:
  ()  (1)  (1,2)  (1,2,1)
           (2,1)  (1,3,2)
                  (2,1,2)
                  (2,1,3)
                  (2,3,1)
                  (3,1,2)
		

Crossrefs

The version for permutations is A001250, complement A348615.
The version for compositions is A025047, complement A345192.
The version with twins (x,x) is A344605.
The version for perms of prime indices is A345164, complement A350251.
The version for factorizations is A348610, complement A348613, weak A349059.
The weak version is A349058, complement A350138, compositions A349052.
The complement is counted by A350252.
A000670 = patterns, ranked by A333217.
A003242 = anti-run compositions.
A005649 = anti-run patterns, complement A069321.
A019536 = necklace patterns.
A129852 and A129853 = up/down and down/up compositions.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],wigQ]],{n,0,6}]
  • PARI
    F(p,x) = {sum(k=0, p, (-1)^((k+1)\2)*binomial((p+k)\2, k)*x^k)}
    R(n,k) = {Vec(if(k==1, x, 2*F(k-2,-x)/F(k-1,x)-2-(k-2)*x) + O(x*x^n))}
    seq(n)= {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 04 2022

Formula

a(n) = 2*A350354(n) for n >= 2. - Andrew Howroyd, Feb 04 2022

Extensions

a(10)-a(18) from Alois P. Heinz, Dec 10 2021
Terms a(19) and beyond from Andrew Howroyd, Feb 04 2022

A348610 Number of alternating ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 12, 1, 3, 3, 6, 1, 11, 1, 7, 3, 3, 3, 15, 1, 3, 3, 12, 1, 11, 1, 6, 6, 3, 1, 23, 1, 6, 3, 6, 1, 12, 3, 12, 3, 3, 1, 28, 1, 3, 6, 12, 3, 11, 1, 6, 3, 11, 1, 33, 1, 3, 6, 6, 3, 11, 1, 23, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The alternating ordered factorizations of n = 1, 6, 12, 16, 24, 30, 32, 36:
  ()   6     12      16      24      30      32      36
       2*3   2*6     2*8     3*8     5*6     4*8     4*9
       3*2   3*4     8*2     4*6     6*5     8*4     9*4
             4*3     2*4*2   6*4     10*3    16*2    12*3
             6*2             8*3     15*2    2*16    18*2
             2*3*2           12*2    2*15    2*8*2   2*18
                             2*12    3*10    4*2*4   3*12
                             2*4*3   2*5*3           2*6*3
                             2*6*2   3*2*5           2*9*2
                             3*2*4   3*5*2           3*2*6
                             3*4*2   5*2*3           3*4*3
                             4*2*3                   3*6*2
                                                     6*2*3
                                                     2*3*2*3
                                                     3*2*3*2
		

Crossrefs

The additive version (compositions) is A025047 ranked by A345167.
The complementary additive version is A345192, ranked by A345168.
Dominated by A348611 (the anti-run version) at positions A122181.
The complement is counted by A348613.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A347463 counts ordered factorizations with integer alternating product.
A348379 counts factorizations w/ an alternating permutation.
A348380 counts factorizations w/o an alternating permutation.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] == Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[ordfacs[n],wigQ]],{n,100}]

A347706 Number of factorizations of n that are not a twin (x*x) nor have an alternating permutation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A348381 at a(216) = 4, A348381(216) = 3.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of sets.

Examples

			The a(n) factorizations for n = 96, 192, 2160, 576:
  2*2*2*12      3*4*4*4         3*3*3*80       4*4*4*9
  2*2*2*2*6     2*2*2*24        6*6*6*10       2*2*2*72
  2*2*2*2*2*3   2*2*2*2*12      2*2*2*270      2*2*2*2*36
                2*2*2*2*2*6     2*3*3*3*40     2*2*2*2*4*9
                2*2*2*2*3*4     2*2*2*2*135    2*2*2*2*6*6
                2*2*2*2*2*2*3   2*2*2*2*3*45   2*2*2*2*2*18
                                2*2*2*2*5*27   2*2*2*2*3*12
                                2*2*2*2*9*15   2*2*2*2*2*2*9
                                               2*2*2*2*2*3*6
                                               2*2*2*2*2*2*3*3
		

Crossrefs

Positions of nonzero terms are A046099.
Partitions of this type are counted by A344654, ranked by A344653.
Partitions not of this type are counted by A344740, ranked by A344742.
The complement is counted by A347050, without twins A348379.
The version for compositions is A348377.
The version allowing twins is A348380.
The inseparable case is A348381.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations of sets.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347438 counts factorizations with alternating product 1, additive A119620.
A348610 counts alternating ordered factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]=={}]]],{n,100}]

Formula

a(2^n) = A344654(n).

A117158 Number of permutations avoiding the consecutive pattern 1234.

Original entry on oeis.org

1, 1, 2, 6, 23, 111, 642, 4326, 33333, 288901, 2782082, 29471046, 340568843, 4263603891, 57482264322, 830335952166, 12793889924553, 209449977967081, 3630626729775362, 66429958806679686, 1279448352687538463, 25874432578888440471, 548178875969847203202
Offset: 0

Views

Author

Steven Finch, Apr 26 2006

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the consecutive pattern 1234. It is the same as the number of permutations which avoid 4321.

References

  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962, pages 156-157.

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          `if`(t<2, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
          add(b(u-j, o+j-1, 0), j=1..u))
        end:
    a:= n-> b(n, 0, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 07 2013
  • Mathematica
    a[n_]:=Coefficient[Series[2/(Cos[x]-Sin[x]+Exp[ -x]),{x,0,30}],x^n]*n!
    (* second program: *)
    b[u_, o_, t_] := b[u, o, t] = If[u+o==0, 1, If[t<2, Sum[b[u+j-1, o-j, t+1], {j, 1, o}], 0] + Sum[b[u-j, o+j-1, 0], {j, 1, u}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)

Formula

From Sergei N. Gladkovskii, Nov 30 2011: (Start)
E.g.f.: 2/(exp(-x) + cos(x) - sin(x)) = 1/W(0) with continued fraction
W(k) = 1 + (x^(2*k))/(f + f*x/(4*k + 1 - x - (4*k + 1)*b/R)), where R := x^(2*k) + b -(x^(4*k+1))/(c + (x^(2*k+1)) + x*c/T); T := 4*k + 3 - x - (4*k + 3)*d/(d +(x^(2*k+1))/W(k+1)), and
f := (4*k)!/(2*k)!; b := (4*k + 1)!/(2*k + 1)!; c := (4*k + 2)!/(2*k + 1)!; and d :=(4*k + 3)!/(2*k + 2)!. (End)
a(n) ~ n! / (sin(r)*r^(n+1)), where r = 1.0384156372665563... is the root of the equation exp(-r) + cos(r) = sin(r). - Vaclav Kotesovec, Dec 11 2013

A080635 Number of permutations on n letters without double falls and without initial falls.

Original entry on oeis.org

1, 1, 1, 3, 9, 39, 189, 1107, 7281, 54351, 448821, 4085883, 40533129, 435847959, 5045745069, 62594829027, 828229153761, 11644113200031, 173331882039141, 2723549731505163, 45047085512477049, 782326996336904679, 14233537708408467549, 270733989894887810547
Offset: 0

Views

Author

Emanuele Munarini, Feb 28 2003

Keywords

Comments

A permutation w has a double fall at k if w(k) > w(k+1) > w(k+2) and has an initial fall if w(1) > w(2).
exp(x*(1-y+y^2)*D_y)*f(y)|_{y=0} = f(1-E(-x)) for any function f with a Taylor series. D_y means differentiation with respect to y and E(x) is the e.g.f. given below. For a proof of exp(x*g(y)*D_y)*f(y) = f(F^{-1}(x+F(y))) with the compositional inverse F^{-1} of F(y)=int(1/g(y),y) with F(0)=0 see, e.g., the Datolli et al. reference.
Number of increasing ordered trees on vertex set {1,2,...,n}, rooted at 1, in which all outdegrees are <= 2. - David Callan, Mar 30 2007
Number of increasing colored 1-2 trees of order n with choice of two colors for the right branches of the vertices of outdegree 2. - Wenjin Woan, May 21 2011

Examples

			E.g.f. = 1 + x + (1/2)*x^2 + (1/2)*x^3 + (3/8)*x^4 + (13/40)*x^5 + (21/80)*x^6 + ...
G.f. = 1 + x + x^2 + 3*x^3 + 9*x^4 + 39*x^5 + 189*x^6 + 1107*x^7 + ...
For n = 3: 123, 132, 231. For n = 4: 1234, 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
a(4)=9. The 9 plane (ordered) increasing unary-binary trees are
...................................................................
..4................................................................
..|................................................................
..3..........4...4...............4...4...............3...3.........
..|........./.....\............./.....\............./.....\........
..2....2...3.......3...2...3...2.......2...3...4...2.......2...4...
..|.....\./.........\./.....\./.........\./.....\./.........\./....
..1......1...........1.......1...........1.......1...........1.....
...................................................................
..3...4...4...3....................................................
...\./.....\./.....................................................
....2.......2......................................................
....|.......|......................................................
....1.......1......................................................
...................................................................
		

Crossrefs

Programs

  • Maple
    a:= proc(n) if n < 2 then 1 else n! * sum((sqrt(3)/(2*Pi*(k+1/3)))^(n+1), k=-infinity..infinity) fi end: seq(a(n), n=0..30); # Richard Ehrenborg, Dec 09 2013
    a := proc(n) option remember; local k; if n < 3 then 1 else
    add(binomial(n-1, k)*a(k)*a(n-k-1), k = 0..n-2) fi end:
    seq(a(n), n = 0..23); # Peter Luschny, May 24 2024
  • Mathematica
    Table[n!, {n, 0, 40}]*CoefficientList[Series[ (1 + 1/Sqrt[3] Tan[Sqrt[3]/2 x])/(1 - 1/Sqrt[3] Tan[Sqrt[3]/2 x]), {x, 0, 40}], x]
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1/2 + Sqrt[3]/2 Tan[ Pi/6 + Sqrt[3] x/2], {x, 0, n}]]; (* Michael Somos, May 22 2011 *)
    Join[{1}, FullSimplify[Table[3^((n+1)/2) * n! * (Zeta[n+1, 1/3] - (-1)^n*Zeta[n+1, 2/3]) / (2*Pi)^(n+1), {n, 1, 20}]]] (* Vaclav Kotesovec, Aug 06 2021 *)
  • Maxima
    a(n):=if n=0 then 1 else sum((-3)^((n-k)/2)*((-1)^(n-k)+1)*sum(binomial(j+k-1,j)*(j+k)!*2^(-j-k)*(-1)^(j)*stirling2(n,j+k),j,0,n-k),k,1,n); /* Vladimir Kruchinin, Feb 13 2019 */
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = O(x); for( k=1, n, A = intformal( 1 + A + A^2)); n! * polcoeff( A, n))}; /* Michael Somos, Oct 04 2003 */
    
  • PARI
    {a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(2*cosh(x +x*O(x^n)) - 1) ) )), n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 22 2016
    
  • Sage
    @CachedFunction
    def c(n,k) :
        if n==k: return 1
        if k<1 or k>n: return 0
        return ((n-k)//2+1)*c(n-1,k-1)+2*k*c(n-1,k+1)
    def A080635(n):
        return add(c(n,k) for k in (0..n))
    [A080635(n) for n in (0..23)] # Peter Luschny, Jun 10 2014
    

Formula

E.g.f.: (1 + 1/sqrt(3) * tan(sqrt(3)/2 * x)) / (1 - 1/sqrt(3) * tan( sqrt(3)/2 * x)).
Recurrence: a(n+1) = (Sum_{k=0..n} binomial(n, k) * a(k) * a(n-k)) - a(n) + 0^n.
E.g.f.: A(x) satisfies A' = 1 - A + A^2. - Michael Somos, Oct 04 2003
E.g.f.: E(x) = (3*cos((1/2)*3^(1/2)*x) + (3^(1/2))*sin((1/2)*3^(1/2)*x))/(3*cos((1/2)*3^(1/2)*x) - (3^(1/2))* sin((1/2)*3^(1/2)*x)). See the Michael Somos comment. - Wolfdieter Lang, Sep 12 2005
O.g.f.: A(x) = 1+x/(1-x-2*x^2/(1-2*x-2*3*x^2/(1-3*x-3*4*x^2/(1-... -n*x-n*(n+1)*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
From Peter Bala: (Start)
An alternative form of the e.g.f. for this sequence taken from [Bergeron et al.] is
(1)... (sqrt(3)/2)*tan((sqrt(3)/2)*x+Pi/6) [with constant term 1/2].
By comparing the egf for this sequence with the egf for the Eulerian numbers A008292 we can show that
(2)... a(n) = A(n,w)/(1+w)^(n-1) for n >= 1,
where w = exp(2*Pi*i/3) and {A(n,x),n>=1} = [1, 1+x, 1+4*x+x^2, 1+11*x+11*x^2+x^3,...] denotes the sequence of Eulerian polynomials. Equivalently,
(3)... a(n) = (-i*sqrt(3))^(n-1)*Sum_{k=1..n} k!*Stirling2(n,k)*(-1/2 + sqrt(3)*i/6)^(k-1) for n >= 1, and
(4)... a(n) = (-i*sqrt(3))^(n-1)*Sum_{k=1..n} (-1/2 + sqrt(3)*i/6)^(k-1)* Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*j^n for n >= 1.
This explicit formula for a(n) may be used to obtain various congruence results. For example,
(5a)... a(p) == 1 (mod p) for prime p = 6*n+1,
(5b)... a(p) == -1 (mod p) for prime p = 6*n+5.
For the corresponding results for the case of non-plane unary-binary trees see A000111. For type B results see A001586. For a related sequence of polynomials see A185415. See also A185416 for a recursive method to compute this sequence. For forests of plane increasing unary binary trees see A185422 and A185423. (End)
O.g.f.: A(x) = x - (1/2)*x^2 + (1/2)*x^3 - (3/8)*x^4 + (13/40)*x^5 - (21/80)*x^6 + (123/560)*x^7 - (809/4480)*x^8 + (671/4480)*x^9 - (5541/44800)*x^10 + .... - Vladimir Kruchinin, Jan 18 2011
Let f(x) = 1+x+x^2. Then a(n+1) = (f(x)*d/dx)^n f(x) evaluated at x = 0. - Peter Bala, Oct 06 2011
From Sergei N. Gladkovskii, May 06 2013 - Dec 24 2013: (Start)
Continued fractions:
G.f.: 1 + 1/Q(0), where Q(k) = 1/(x*(k+1)) - 1 - 1/Q(k+1).
E.g.f.: 1 + 2*x/(W(0)-x), where W(k) = 4*k + 2 - 3*x^2/W(k+1).
G.f.: 1 + x/Q(0), m=1, where Q(k) = 1 - m*x*(2*k+1) - m*x^2*(2*k+1)*(2*k+2)/( 1 - m*x*(2*k+2) - m*x^2*(2*k+2)*(2*k+3)/Q(k+1) ).
G.f.: 1 + x/Q(0), where Q(k) = 1 - x*(k+1) - x^2*(k+1)*(k+2)/Q(k+1).
G.f.: 1 + T(0)*x/(1-x), where T(k) = 1 - x^2*(k+1)*(k+2)/( x^2*(k+1)*(k+2) - (1-x*(k+1))*(1-x*(k+2))/T(k+1) ).
G.f.: 1 + x/(G(0)-x), where G(k) = 1 + x*(k+1) - x*(k+1)/(1 - x*(k+2)/G(k+1) ). (End)
a(n) ~ 3^(3*(n+1)/2) * n^(n+1/2) / (exp(n)*(2*Pi)^(n+1/2)). - Vaclav Kotesovec, Oct 05 2013
a(n) = n! * Sum_{k=-oo..oo} (sqrt(3)/(2*Pi*(k+1/3)))^(n+1) for n >= 1. - Richard Ehrenborg, Dec 09 2013
From Peter Bala, Sep 11 2015: (Start)
The e.g.f. A(x) = (sqrt(3)/2)*tan((sqrt(3)/2)*x + Pi/6) satisfies the differential equation A"(x) = 2*A(x)*A'(x) with A(0) = 1/2 and A'(0) = 1, leading to the recurrence a(0) = 1/2, a(1) = 1, else a(n) = 2*Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i) for the sequence [1/2, 1, 1, 3, 9, 39, 189, 1107, ...].
Note, the same recurrence, but with the initial conditions a(0) = 1 and a(1) = 1, produces the sequence n! and with a(0) = 0 and a(1) = 1 produces A000182. Cf. A002105, A234797. (End)
E.g.f.: exp( Series_Reversion( Integral 1/(2*cosh(x) - 1) dx ) ). - Paul D. Hanna, Feb 22 2016
a(n) = Sum_{k=1..n} (-3)^((n-k)/2)*((-1)^(n-k)+1)*Sum_{j=0..n-k} C(j+k-1,j)*(j+k)!*2^(-j-k)*(-1)^j*Stirling2(n,j+k),n>0, a(0)=1. - Vladimir Kruchinin, Feb 13 2019
For n > 0, a(n) = 3^((n+1)/2) * n! * (zeta(n+1, 1/3) - (-1)^n*zeta(n+1, 2/3)) / (2*Pi)^(n+1). - Vaclav Kotesovec, Aug 06 2021

Extensions

Several typos corrected by Olivier Gérard, Mar 26 2011

A348380 Number of factorizations of n without an alternating permutation. Includes all twins (x*x).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A333487 at a(216) = 4, A333487(216) = 3.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(n) factorizations for n = 96, 144, 192, 384:
  (2*2*2*12)     (12*12)        (3*4*4*4)        (4*4*4*6)
  (2*2*2*2*6)    (2*2*2*18)     (2*2*2*24)       (2*2*2*48)
  (2*2*2*2*2*3)  (2*2*2*2*9)    (2*2*2*2*12)     (2*2*2*2*24)
                 (2*2*2*2*3*3)  (2*2*2*2*2*6)    (2*2*2*2*3*8)
                                (2*2*2*2*3*4)    (2*2*2*2*4*6)
                                (2*2*2*2*2*2*3)  (2*2*2*2*2*12)
                                                 (2*2*2*2*2*2*6)
                                                 (2*2*2*2*2*3*4)
                                                 (2*2*2*2*2*2*2*3)
		

Crossrefs

The inseparable case is A333487, complement A335434, without twins A348381.
Non-twin partitions of this type are counted by A344654, ranked by A344653.
Twins and partitions not of this type are counted by A344740, ranked by A344742.
Partitions of this type are counted by A345165, ranked by A345171.
Partitions not of this type are counted by A345170, ranked by A345172.
The case without twins is A347706.
The complement is counted by A348379, with twins A347050.
Numbers with a factorization of this type are A348609.
An ordered version is A348613, complement A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A325535 counts inseparable partitions, ranked by A335448.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[facs[n],Select[Permutations[#],wigQ]=={}&]],{n,100}]

Formula

a(2^n) = A345165(n).

A347050 Number of factorizations of n that are a twin (x*x) or have an alternating permutation.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2021

Keywords

Comments

First differs from A348383 at a(216) = 27, A348383(216) = 28.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
These permutations are ordered factorizations of n with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins for n > 0 is a(n) + 1 if n is a perfect square; otherwise a(n).

Examples

			The factorizations for n = 4, 12, 24, 30, 36, 48, 60, 64, 72:
  4    12     24     30     36       48       60       64       72
  2*2  2*6    3*8    5*6    4*9      6*8      2*30     8*8      8*9
       3*4    4*6    2*15   6*6      2*24     3*20     2*32     2*36
       2*2*3  2*12   3*10   2*18     3*16     4*15     4*16     3*24
              2*2*6  2*3*5  3*12     4*12     5*12     2*4*8    4*18
              2*3*4         2*2*9    2*3*8    6*10     2*2*16   6*12
                            2*3*6    2*4*6    2*5*6    2*2*4*4  2*4*9
                            3*3*4    3*4*4    3*4*5             2*6*6
                            2*2*3*3  2*2*12   2*2*15            3*3*8
                                     2*2*3*4  2*3*10            3*4*6
                                              2*2*3*5           2*2*18
                                                                2*3*12
                                                                2*2*3*6
                                                                2*3*3*4
                                                                2*2*2*3*3
The a(270) = 19 factorizations:
  (2*3*5*9)   (5*6*9)   (3*90)   (270)
  (3*3*5*6)   (2*3*45)  (5*54)
  (2*3*3*15)  (2*5*27)  (6*45)
              (2*9*15)  (9*30)
              (3*3*30)  (10*27)
              (3*5*18)  (15*18)
              (3*6*15)  (2*135)
              (3*9*10)
Note that (2*3*3*3*5) is separable but has no alternating permutations.
		

Crossrefs

Partitions not of this type are counted by A344654, ranked by A344653.
Partitions of this type are counted by A344740, ranked by A344742.
The complement is counted by A347706, without twins A348380.
The case without twins is A348379.
Dominates A348383, the separable case.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}]]],{n,100}]

Formula

For n > 1, a(n) = A335434(n) + A010052(n).

A349050 Number of multisets of size n that have no alternating permutations and cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 12, 20, 32, 48, 80, 112, 192, 256, 448, 576, 1024, 1280, 2304, 2816, 5120, 6144, 11264, 13312, 24576, 28672, 53248, 61440, 114688, 131072, 245760, 278528, 524288, 589824, 1114112, 1245184, 2359296, 2621440, 4980736, 5505024
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The multiset {1,2,2,2,2,3,3} has no alternating permutations, even though it does have the three anti-run permutations (2,1,2,3,2,3,2), (2,3,2,1,2,3,2), (2,3,2,3,2,1,2), so is counted under a(7).
The a(2) = 1 through a(7) = 12 multisets:
  {11}  {111}  {1111}  {11111}  {111111}  {1111111}
               {1112}  {11112}  {111112}  {1111112}
               {1222}  {12222}  {111122}  {1111122}
                       {12223}  {111123}  {1111123}
                                {112222}  {1122222}
                                {122222}  {1122223}
                                {122223}  {1222222}
                                {123333}  {1222223}
                                          {1222233}
                                          {1222234}
                                          {1233333}
                                          {1233334}
As compositions:
  (2)  (3)  (4)    (5)      (6)      (7)
            (1,3)  (1,4)    (1,5)    (1,6)
            (3,1)  (4,1)    (2,4)    (2,5)
                   (1,3,1)  (4,2)    (5,2)
                            (5,1)    (6,1)
                            (1,1,4)  (1,1,5)
                            (1,4,1)  (1,4,2)
                            (4,1,1)  (1,5,1)
                                     (2,4,1)
                                     (5,1,1)
                                     (1,1,4,1)
                                     (1,4,1,1)
		

Crossrefs

The case of weakly decreasing multiplicities is A025065.
The inseparable case is A336102.
A separable instead of alternating version is A336103.
The version for partitions is A345165.
The version for factorizations is A348380, complement A348379.
The complement (still covering an initial interval) is counted by A349055.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A344654 counts partitions w/o an alternating permutation, ranked by A344653.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n],Select[Permutations[#],wigQ]=={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 0, if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-1)/2-2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349055(n).
a(n) = (n+2)*2^(n/2-3) for even n > 0; a(n) = (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A162975 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k doubledescents (0 <= k <= n-2). We say that i is a doubledescent (also called a double fall) of a permutation p if p(i) > p(i+1) > p(i+2).

Original entry on oeis.org

1, 1, 2, 5, 1, 17, 6, 1, 70, 41, 8, 1, 349, 274, 86, 10, 1, 2017, 2040, 803, 167, 12, 1, 13358, 16346, 8221, 2064, 316, 14, 1, 99377, 143571, 86214, 28143, 4961, 597, 16, 1, 822041, 1365354, 966114, 374166, 88482, 11486, 1138, 18, 1
Offset: 0

Views

Author

Emeric Deutsch, Jul 26 2009

Keywords

Comments

Row n (n>=2) contains n-1 entries.
Sum of entries in row n is n! = A000142(n).
Sum_{k=0..n-2} k*T(n,k) = A005990(n-1).
The first Maple program yields (by straightforward counting) the generating polynomial of a specified row n.

Examples

			T(5,2) = 8 because we have 15432, 25431, 35421, 43215, 45321, 53214, 54213, and 54312.
Triangle starts:
    1;
    1;
    2;
    5,   1;
   17,   6,   1;
   70,  41,   8,   1;
  349, 274,  86,  10,   1;
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, New York, 1983.

Crossrefs

Programs

  • Maple
    n := 7: dds := proc (p) local ct, j: ct := 0: for j from 3 to nops(p) do if p[j] < p[j-1] and p[j-1] < p[j-2] then ct := ct+1 else end if end do: ct end proc: with(combinat): P := permute(n): f[n] := sort(add(t^dds(P[i]), i = 1 .. factorial(n)));
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u-j, o+j-1, 1), j=1..u)+
          add(b(u+j-1, o-j, 2)*`if`(t=2, x, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Oct 25 2013
  • Mathematica
    nn=10; u=y-1; a=Apply[Plus, Table[Normal[Series[y x^3/(1-y x - y x^2), {x,0,nn}]][[n]]/(n+2)!, {n,1,nn-2}]]/.y->u; Range[0,nn]! CoefficientList[Series[1/(1-x-a), {x,0,nn}], {x,y}]//Grid  (* Geoffrey Critzer, Dec 12 2012 *)

Formula

E.g.f.: 1/(1 - x - Sum_{k,n} I(n,k)(y - 1)^k*x^n/n!) where I(n,k) is the coefficient of y^k*x^n in the ordinary generating function expansion of y x^3/(1 - y*x - y*x^2). See Flajolet and Sedgewick reference in Links section. - Geoffrey Critzer, Dec 12 2012

A349055 Number of multisets of size n that have an alternating permutation and cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 24, 52, 108, 224, 464, 944, 1936, 3904, 7936, 15936, 32192, 64512, 129792, 259840, 521472, 1043456, 2091008, 4183040, 8375296, 16752640, 33525760, 67055616, 134156288, 268320768, 536739840, 1073496064, 2147205120, 4294443008, 8589344768
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.
The multisets that have an alternating permutation are those which have no part with multiplicity greater than floor(n/2) except for odd n when either the smallest or largest part can have multiplicity ceiling(n/2). - Andrew Howroyd, Jan 13 2024

Examples

			The multiset {1,2,2,3} has alternating permutations (2,1,3,2), (2,3,1,2), so is counted under a(4).
The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
              {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
                       {1,2,3,3}  {1,1,2,2,3}
                       {1,2,3,4}  {1,1,2,3,3}
                                  {1,1,2,3,4}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
As compositions:
  (1)  (1,1)  (1,2)    (2,2)      (2,3)
              (2,1)    (1,1,2)    (3,2)
              (1,1,1)  (1,2,1)    (1,1,3)
                       (2,1,1)    (1,2,2)
                       (1,1,1,1)  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
		

Crossrefs

The strong inseparable case is A025065.
A separable instead of alternating version is A336103, complement A336102.
The case of weakly decreasing multiplicities is A336106.
The version for non-twin partitions is A344654, ranked by A344653.
The complement for non-twin partitions is A344740, ranked by A344742.
The complement for partitions is A345165, ranked by A345171.
The version for partitions is A345170, ranked by A345172.
The version for factorizations is A348379, complement A348380.
The complement (still covering an initial interval) is counted by A349050.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n], Select[Permutations[#],wigQ]!={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 1, 2^(n-1) - if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-5)/2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349050(n).
a(n) = 2^(n-1) - (n+2)*2^(n/2-3) for even n > 0; a(n) = 2^(n-1) - (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024
Previous Showing 11-20 of 57 results. Next