cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 73 results. Next

A182944 Square array A(i,j), i >= 1, j >= 1, of prime powers prime(i)^j, by descending antidiagonals.

Original entry on oeis.org

2, 4, 3, 8, 9, 5, 16, 27, 25, 7, 32, 81, 125, 49, 11, 64, 243, 625, 343, 121, 13, 128, 729, 3125, 2401, 1331, 169, 17, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23
Offset: 1

Views

Author

Clark Kimberling, Dec 14 2010

Keywords

Comments

We alternatively refer to this sequence as a triangle T(.,.), with T(n,k) = A(k,n-k+1) = prime(k)^(n-k+1).
The monotonic ordering of this sequence, prefixed by 1, is A000961.
The joint-rank array of this sequence is A182869.
Main diagonal gives A062457. - Omar E. Pol, Sep 11 2018

Examples

			Square array A(i,j) begins:
  i \ j: 1      2      3      4      5  ...
  ---\-------------------------------------
  1:     2,     4,     8,    16,    32, ...
  2:     3,     9,    27,    81,   243, ...
  3:     5,    25,   125,   625,  3125, ...
  4:     7,    49,   343,  2401, 16807, ...
  ...
The triangle T(n,k) begins:
  n\k:  1     2     3     4     5     6  ...
  1:    2
  2:    4     3
  3:    8     9     5
  4:   16    27    25     7
  5:   32    81   125    49    11
  6:   64   243   625   343   121    13
  ...
		

Crossrefs

Cf. A000961, A006939 (row products of triangle), A062457, A182945, A332979 (row maxima of triangle).
Columns: A000040 (1), A001248 (2), A030078 (3), A030514 (4), A050997 (5), A030516 (6), A092759 (7), A179645 (8), A179665 (9), A030629 (10).
A319075 extends the array with 0th powers.
Subtable of A242378, A284457, A329332.

Programs

  • Mathematica
    TableForm[Table[Prime[n]^j,{n,1,14},{j,1,8}]]

Formula

From Peter Munn, Dec 29 2019: (Start)
A(i,j) = A182945(j,i) = A319075(j,i).
A(i,j) = A242378(i-1,2^j) = A329332(2^(i-1),j).
A(i,i) = A062457(i).
(End)

Extensions

Clarified in respect of alternate reading as a triangle by Peter Munn, Aug 28 2022

A189975 Numbers with prime factorization pqr^3 for distinct p, q, r.

Original entry on oeis.org

120, 168, 264, 270, 280, 312, 378, 408, 440, 456, 520, 552, 594, 616, 680, 696, 702, 728, 744, 750, 760, 888, 918, 920, 945, 952, 984, 1026, 1032, 1064, 1128, 1144, 1160, 1240, 1242, 1272, 1288, 1416, 1464, 1480, 1485, 1496, 1566, 1608, 1624, 1640, 1672
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,3}; Select[Range[2000],f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/3),forprime(q=2,sqrt(lim\p^3),if(p==q,next);t=p^3*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A189975(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**3)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,3)[0]+1))+sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))-primepi(integer_nthroot(x,5)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

A131992 a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4.

Original entry on oeis.org

31, 121, 781, 2801, 16105, 30941, 88741, 137561, 292561, 732541, 954305, 1926221, 2896405, 3500201, 4985761, 8042221, 12326281, 14076605, 20456441, 25774705, 28792661, 39449441, 48037081, 63455221, 89451461, 105101005, 113654321
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

Thébault shows that a(2) = 121 is the only square in this sequence. - Charles R Greathouse IV, Jul 23 2013
Giovanni Resta has found that 28792661 is the first Sophie Germain prime of this form (and actually of the form p = (n^m-1)/(n-1) for any p-1 > n, m > 1). - M. F. Hasler, Mar 03 2020

Examples

			a(1) = 31 because prime(1) = 2 and 1 + 2 + 2^2 + 2^3 + 2^4 = 1 + 2 + 4 + 8 + 16 = 31.
		

References

  • Victor Thébault, Curiosités arithmétiques, Mathesis 62 (1953), pp. 120-129.

Crossrefs

Equals A053699 restricted to prime indices. Subsequence of primes is A190527.

Programs

Formula

a(n) = 1 + A131991(n)*A000040(n).
a(n) = (A050997(n) - 1)/A006093(n).
a(n) = A000203(prime(n)^4). - R. J. Mathar, Mar 15 2018
a(n) = (prime(n)^5 - 1)/(prime(n) - 1) = A053699(prime(n)). (This is also meant by the 2nd formula.) - M. F. Hasler, Mar 03 2020

A133536 Sum of fifth powers of two consecutive primes.

Original entry on oeis.org

275, 3368, 19932, 177858, 532344, 1791150, 3895956, 8912442, 26947492, 49140300, 97973108, 185200158, 262864644, 376353450, 647540500, 1133119792, 1559520600, 2194721408, 3154354458, 3877300944, 5150127992, 7016097042, 9523100092
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=2^5+3^5=275.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]

Formula

a(n) = A050997(n) + A050997(n+1). - Michel Marcus, Nov 09 2013

A138404 a(n) = prime(n)^5 - prime(n).

Original entry on oeis.org

30, 240, 3120, 16800, 161040, 371280, 1419840, 2476080, 6436320, 20511120, 28629120, 69343920, 115856160, 147008400, 229344960, 418195440, 714924240, 844596240, 1350125040, 1804229280, 2073071520, 3077056320, 3939040560
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Comments

Subsequence of A061167. - Bernard Schott, Feb 06 2023

Crossrefs

Programs

  • Magma
    [NthPrime((n))^5 - NthPrime((n)): n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, p^5 - p], {n, 1, 50}]; a
    #^5-#&/@Prime[Range[30]] (* Harvey P. Dale, Dec 25 2022 *)
  • PARI
    forprime(p=2,1e3,print1(p^5-p", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A050997(n) - A000040(n). - Elmo R. Oliveira, Jan 27 2023
From Bernard Schott, Feb 09 2023: (Start)
a(n) = A061167(A000040(n)).
a(n) = 30 * A138430(n).
a(n) = A000040(n) * A006093(n) * A008864(n) * A066872(n). (End)

A115975 Numbers of the form p^k, where p is a prime and k is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 15 2006; corrected Apr 23 2006

Keywords

Crossrefs

Subsequence of A000961 (powers of primes).
Cf. A117245 (partial sums).

Programs

  • Mathematica
    With[{nn=60},Take[Join[{1},Union[First[#]^Last[#]&/@Union[Flatten[ Outer[List,Prime[Range[nn]],Fibonacci[Range[nn/6]]],1]]]],70]] (* Harvey P. Dale, Jun 05 2012 *)
    fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k++; f = Fibonacci[k]]; s]; seq[max_] := Module[{s = {1}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; Sort[s]]; seq[250] (* Amiram Eldar, Aug 09 2024 *)
  • PARI
    {m=240;v=Set([]);forprime(p=2,m,i=0;while((s=p^fibonacci(i))
    				

Extensions

Edited and corrected by Klaus Brockhaus, Apr 25 2006

A122103 Sum of the fifth powers of the first n primes.

Original entry on oeis.org

32, 275, 3400, 20207, 181258, 552551, 1972408, 4448507, 10884850, 31395999, 60025150, 129369107, 245225308, 392233751, 621578758, 1039774251, 1754698550, 2599294851, 3949419958, 5753649309, 7826720902, 10903777301, 14842817944
Offset: 1

Views

Author

Alexander Adamchuk, Aug 20 2006

Keywords

Comments

a(n) is prime for n = {66, 148, 150, 164, 174, 214, 238, 264, 312, 328, 354, 440, 516, 536, 616, 624, 724, 744, 774, 836, 940, ...} = A122125. Primes of this form are listed in A122126 = {32353461605953, 9874820441996857, 10821208357045699, ...}.

Examples

			a(2) = 275 because the first two primes are 2 and 3, the fifth powers of which are 32 and 243, and 32 + 243 = 275.
a(3) = 3400, because the third prime is 5, its fifth power if 3125 and 275 + 3125 = 3400.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Prime[k]^5, {k, n}], {n, 100}]
  • PARI
    a(n)=sum(i=1,n,prime(i)) \\ Charles R Greathouse IV, Nov 30 2013

Formula

a(n) = sum(k = 1 .. n, prime(k)^5).
a(n) = 1/6*n^6*log(n)^5 + O(n^6*log(n)^4*log(log(n))). The proof is similar to proof for A007504(n) (see link of Shevelev). For a generalization, see comment in A122102. - Vladimir Shevelev, Aug 14 2013

A131993 1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4 + prime(n)^5.

Original entry on oeis.org

63, 364, 3906, 19608, 177156, 402234, 1508598, 2613660, 6728904, 21243690, 29583456, 71270178, 118752606, 150508644, 234330768, 426237714, 727250580, 858672906, 1370581548, 1830004056, 2101864254, 3116505840, 3987077724
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

a(n) = 1 + A131992(n)*A000040(n).

Crossrefs

Programs

  • Magma
    [1+(&+[NthPrime(n)^(k): k in [1..5]]): n in [1..100]]; // Berselli - Librandi, Apr 20 2011
  • Mathematica
    Total[#^Range[0,5]]&/@Prime[Range[30]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

a(n) = (A030516(n) - 1)/A006093(n).

A255231 The number of factorizations n = Product_i b_i^e_i, where all bases b_i are distinct, and all exponents e_i are distinct >=1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 6, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Saverio Picozzi, Feb 18 2015

Keywords

Comments

Not multiplicative: a(48) = a(2^4*3) = 5 <> a(2^4)*a(3) = 4*1 = 4. - R. J. Mathar, Nov 05 2016

Examples

			From _R. J. Mathar_, Nov 05 2016: (Start)
a(4)=2: 4^1 = 2^2.
a(8)=2: 8^1 = 2^3.
a(9)=2: 9^1 = 3^2.
a(12)=2: 12^1 = 2^2*3^1.
a(16)=4: 16^1 = 4^2 = 2^2*4^1 = 2^4.
a(18)=2: 18^1 = 2*3^2.
a(20)=2: 20^1 = 2^2*5^1.
a(24)=3: 24^1 = 2^2*6^1 = 2^3*3^1.
a(32)=5: 32^1 = 2^1*4^2 = 2^2*8^1 = 2^3*4^1 = 2^5.
a(36)=4: 36^1 = 6^2 = 3^2*4^1 = 2^2*9^1.
a(48)=5: 48^1 = 3^1*4^2 = 2^2*12^1 = 2^3*6^1 = 2^4*3^1.
a(60)=2 : 60^1 = 2^2*15^1.
a(64)=7: 64^1 = 8^2 = 4^3 = 2^2*16^1 = 2^3*8^1 = 2^4*4^1 = 2^6.
a(72)=6 : 72^1 = 3^2*8^1 = 2^1*6^2 = 2^2*18^1 = 2^3*9^1 = 2^3*3^2.
(End)
		

Crossrefs

Cf. A000688 (b_i not necessarily distinct).

Programs

  • Maple
    # Count solutions for products if n = dvs_i^exps(i) where i=1..pividx are fixed
    Apiv := proc(n,dvs,exps,pividx)
        local dvscnt, expscopy,i,a,expsrt,e ;
        dvscnt := nops(dvs) ;
        a := 0 ;
        if pividx > dvscnt then
            # have exhausted the exponent list: leave of the recursion
            # check that dvs_i^exps(i) is a representation
            if n = mul( op(i,dvs)^op(i,exps),i=1..dvscnt) then
                # construct list of non-0 exponents
                expsrt := [];
                for i from 1 to dvscnt do
                    if op(i,exps) > 0 then
                        expsrt := [op(expsrt),op(i,exps)] ;
                    end if;
                end do;
                # check that list is duplicate-free
                if nops(expsrt) = nops( convert(expsrt,set)) then
                    return 1;
                else
                    return 0;
                end if;
            else
                return 0 ;
            end if;
        end if;
        # need a local copy of the list to modify it
        expscopy := [] ;
        for i from 1 to nops(exps) do
            expscopy := [op(expscopy),op(i,exps)] ;
        end do:
        # loop over all exponents assigned to the next base in the list.
        for e from 0 do
            candf := op(pividx,dvs)^e ;
            if modp(n,candf) <> 0 then
                break;
            end if;
            # assign e to the local copy of exponents
            expscopy := subsop(pividx=e,expscopy) ;
            a := a+procname(n,dvs,expscopy,pividx+1) ;
        end do:
        return a;
    end proc:
    A255231 := proc(n)
        local dvs,dvscnt,exps ;
        if n = 1 then
            return 1;
        end if;
        # candidates for the bases are all divisors except 1
        dvs := convert(numtheory[divisors](n) minus {1},list) ;
        dvscnt := nops(dvs) ;
        # list of exponents starts at all-0 and is
        # increased recursively
        exps := [seq(0,e=1..dvscnt)] ;
        # take any subset of dvs for the bases, i.e. exponents 0 upwards
        Apiv(n,dvs,exps,1) ;
    end proc:
    seq(A255231(n),n=1..120) ; # R. J. Mathar, Nov 05 2016

Formula

a(n)=1 for all n in A005117. a(n)=2 for all n in A001248 and for all n in A054753 and for all n in A085987 and for all n in A030078. a(n)=3 for all n in A065036. a(n)=4 for all n in A085986 and for all n in A030514. a(n)=5 for all n in A178739, all n in A179644 and for all n in A050997. a(n)=6 for all n in A143610, all n in A162142 and all n in A178740. a(n)=7 for all n in A030516. a(n)=9 for all n in A189988 and all n in A189987. a(n)=10 for all n in A092759. a(n) = 11 for all n in A179664. a(n)=12 for all n in A179646. - R. J. Mathar, Nov 05 2016, May 20 2017

Extensions

Values corrected. Incorrect comments removed. - R. J. Mathar, Nov 05 2016

A133521 Smallest k such that p(n)^5 - k is prime where p(n) is the n-th prime.

Original entry on oeis.org

1, 2, 4, 20, 4, 2, 18, 18, 16, 6, 2, 6, 24, 12, 36, 22, 10, 8, 8, 24, 20, 86, 22, 6, 18, 42, 26, 6, 50, 52, 20, 12, 48, 2, 196, 68, 18, 14, 16, 16, 18, 2, 10, 6, 16, 38, 2, 36, 6, 2, 16, 42, 18, 42, 40, 34, 22, 2, 38, 4, 36, 52, 26, 132, 36, 28, 24, 74, 46, 36, 4, 16, 8, 24, 80, 16
Offset: 1

Views

Author

Carl R. White, Sep 14 2007

Keywords

Examples

			p(10)=29, 29^5 = 20511149; for odd k and n > 1, p(n)^r - k is even and thus not prime, so we only need consider even k.
for k = 2: 20511149 - 2 = 20511147, which is 3 * 23 * 297263 and not prime.
for k = 4: 20511149 - 4 = 20511145, which is 5 * 4102229, also not prime.
for k = 6: 20511149 - 6 = 20511141, which is prime, so 6 is the smallest number that can be subtracted from 20511149 to make another prime.
Hence a(10) = 6.
		

Crossrefs

Programs

  • Mathematica
    #-NextPrime[#,-1]&/@(Prime[Range[80]]^5) (* Harvey P. Dale, Sep 27 2020 *)
Previous Showing 21-30 of 73 results. Next