A377148
a(n) = Sum_{k=0..n} binomial(k+3,3) * binomial(k,n-k)^2.
Original entry on oeis.org
1, 4, 14, 60, 225, 796, 2764, 9304, 30580, 98700, 313422, 981548, 3037473, 9301620, 28222000, 84927760, 253699285, 752863840, 2220831160, 6515581600, 19021079866, 55276625304, 159967084164, 461150383400, 1324652146775, 3792447499916, 10824189204014
Offset: 0
-
[&+[Binomial(k+3,3)*Binomial(k, n-k)^2: k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, May 12 2025
-
Table[Sum[Binomial[k+3,3]*Binomial[k, n-k]^2,{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 12 2025 *)
-
a(n) = sum(k=0, n, binomial(k+3, 3)*binomial(k, n-k)^2);
-
a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=3, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
A377145
a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(k,n-k)^2.
Original entry on oeis.org
1, 3, 9, 34, 111, 351, 1103, 3384, 10224, 30536, 90222, 264186, 767663, 2215623, 6356907, 18143300, 51540885, 145801395, 410888595, 1153964520, 3230723826, 9019081038, 25112021154, 69750583164, 193303849531, 534602071341, 1475644537323, 4065845732794
Offset: 0
-
a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(k, n-k)^2);
-
a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=2, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
A078698
Number of ways to lace a shoe that has n pairs of eyelets such that each eyelet has at least one direct connection to the opposite side.
Original entry on oeis.org
1, 2, 20, 396, 14976, 907200, 79315200, 9551001600, 1513528934400, 305106949324800, 76296489615360000, 23175289163980800000, 8404709419090575360000, 3587225703492542791680000, 1779970753996760560435200000, 1016036270188884847558656000000, 661106386935312429191528448000000
Offset: 1
a(3) = 20: label the eyelets 1,2,3 from front to back on the left side then 4,5,6 from back to front on the right side. The lacings are: 124356 154326 153426 142536 145236 135246 and the following and their mirror images: 125346 124536 125436 152346 153246 152436 154236.
Examples for n=2,3,4 can be found following the FORTRAN program at given link.
- C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 494.
-
c Program provided at Pfoertner link
-
a[n_] := (n-1)!^2 Sum[Binomial[n-k, k]^2, {k, 0, n/2}];
Array[a, 17] (* Jean-François Alcover, Jul 20 2018 *)
A181546
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)^4.
Original entry on oeis.org
1, 1, 2, 17, 83, 338, 1923, 11553, 63028, 359203, 2172469, 13026034, 78106885, 478415635, 2957675956, 18321372721, 114301292581, 718253640196, 4531427831111, 28699590926291, 182566373639352, 1165539703613397
Offset: 0
G.f. A(x) = 1 + x + 2*x^2 + 17*x^3 + 83*x^4 + 338*x^5 + 1923*x^6 +...
The terms begin:
a(0) = a(1) = 1^4;
a(2) = 1^4 + 1^4 = 2;
a(3) = 1^4 + 2^4 = 17;
a(4) = 1^4 + 3^4 + 1^4 = 83;
a(5) = 1^4 + 4^4 + 3^4 = 338;
a(6) = 1^4 + 5^4 + 6^4 + 1^4 = 1923;
a(7) = 1^4 + 6^4 + 10^4 + 4^4 = 11553; ...
-
Table[Sum[Binomial[n-k,k]^4,{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, May 22 2021 *)
-
{a(n)=sum(k=0,n\2,binomial(n-k,k)^4)}
A185828
Half the number of n X 2 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.
Original entry on oeis.org
1, 3, 10, 23, 61, 162, 421, 1103, 2890, 7563, 19801, 51842, 135721, 355323, 930250, 2435423, 6376021, 16692642, 43701901, 114413063, 299537290, 784198803, 2053059121, 5374978562, 14071876561, 36840651123, 96450076810, 252509579303
Offset: 1
Some solutions for 4 X 2 with a(1,1)=0:
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1
0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1
0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
The logarithmic g.f. begins:
L(x) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 162*x^6/6 + ..., where
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 63*x^6 + ... + A051286(n)*x^n/n + ... - _Paul D. Hanna_, Mar 19 2011
-
a := proc(n): n*add(binomial(2*n-2*k, 2*k)/(n-k), k=0..n-1) end: seq(a(n), n=1..28); # Johannes W. Meijer, Jun 18 2018
-
{a(n)=n*sum(k=0, n-1, binomial(2*n-2*k, 2*k)/(n-k))} /* Paul D. Hanna, Mar 19 2011 */
-
{a(n)=n*polcoeff(-log( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n))/2, n)} /* Paul D. Hanna, Mar 19 2011 */
A377152
a(n) = Sum_{k=0..n} binomial(k+4,4) * binomial(k,n-k)^2.
Original entry on oeis.org
1, 5, 20, 95, 400, 1561, 5915, 21610, 76585, 265075, 898622, 2992235, 9810290, 31727815, 101379175, 320464280, 1003259080, 3113576320, 9586763720, 29305985800, 88997753446, 268642069750, 806394498200, 2408144329250, 7157177344225, 21177323087891
Offset: 0
-
f:= proc(n) local k; add(binomial(k+4,4)*binomial(k,n-k)^2,k=0..n) end proc:
map(f, [$0..50]); # Robert Israel, Dec 05 2024
-
a(n) = sum(k=0, n, binomial(k+4, 4)*binomial(k, n-k)^2);
-
a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=4, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
A384747
Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,..,k}, and no nodes have the same weight as their parent node.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 5, 6, 0, 1, 11, 15, 16, 0, 1, 26, 39, 43, 44, 0, 1, 63, 110, 123, 127, 128, 0, 1, 153, 308, 358, 371, 375, 376, 0, 1, 376, 869, 1046, 1096, 1109, 1113, 1114, 0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346, 0, 1, 2317, 7238, 9283, 9904, 10084, 10134, 10147, 10151, 10152
Offset: 0
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9
n=0 [1]
n=1 [0, 1]
n=2 [0, 1, 2]
n=3 [0, 1, 5, 6]
n=4 [0, 1, 11, 15, 16]
n=5 [0, 1, 26, 39, 43, 44]
n=6 [0, 1, 63, 110, 123, 127, 128]
n=7 [0, 1, 153, 308, 358, 371, 375, 376]
n=8 [0, 1, 376, 869, 1046, 1096, 1109, 1113, 1114]
n=9 [0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346]
...
T(3,3) = 6 counts:
o o o o o __o__
| | | / \ / \ / | \
(3) (2) (1) (1) (2) (2) (1) (1) (1) (1)
| |
(1) (2)
-
b(i,j,k,N) = {if(k>N,1, 1/( 1 - sum(u=1,j, if(u==i,0,x^u * b(u,j,k+1,N-u+1)))))}
Gx(k,N) = {my(x='x+O('x^(N+1))); Vec(1/(1 - sum(i=1,k, b(i,k,1,N)*x^i)))}
T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Gx(k,N)~])); vector(N, n, vector(n, k, v[n, k]))}
T(9)
A077419
Largest Whitney number of Fibonacci lattices J(Z_n).
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 7, 11, 17, 26, 40, 63, 97, 153, 238, 376, 587, 931, 1458, 2317, 3640, 5794, 9124, 14545, 22951, 36631, 57904, 92512, 146461, 234205, 371281, 594169, 943045, 1510192, 2399460, 3844787, 6114555, 9802895, 15603339, 25027296
Offset: 0
- Emanuele Munarini, Mar 05 2007, Table of n, a(n) for n = 0..100
- Brian Kent, Sarah Racz, and Sanjit Shashi, Scrambling in quantum cellular automata, arXiv:2301.07722 [quant-ph], 2023.
- E. Munarini and N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
-
with(FormalPowerSeries): with(LREtools): # requires Maple 2022
gf:= (1 + 2*x + 2*x^4 - x^6 - (1-x^2)*sqrt(1 - 2*x^2 - x^4 - 2*x^6 + x^8))/(2*x*sqrt(1 - 2*x^2 - x^4 - 2*x^6 + x^8));
re:= FindRE(gf,x,a(n));
inits:= {seq(a(i-1)=[1,1,1,2,2,3,5,7,11,17,26,40,63,97, 153][i],i=1..14)};
rm:= (n+1)*a(n) +(n-2)*a(n-1) +2*(-n+1)*a(n-2) +2*(-n+1)*a(n-3) +(-n-3)*a(n-4) +(-n+8)*a(n-5) +2*(-n+6)*a(n-6) +2*(-n+7)*a(n-7) +(n-9)*a(n-8) +(n-10)*a(n-9)=0;
minre:= MinimalRecurrence(re, a(n), inits); minrm:= MinimalRecurrence(rm, a(n), inits); # shows that Mathar's recurrence is equivalent
f:= REtoproc(re,a(n),inits); seq(f(n),n=0..40); # Georg Fischer, Oct 22 2022
-
gf[x_] = (1 + 2 x + 2 x^4 - x^6 - (1 - x^2) Sqrt[1 - 2 x^2 - x^4 - 2 x^6 + x^8])/(2 x Sqrt[1 - 2 x^2 - x^4 - 2 x^6 + x^8]);
Table[SeriesCoefficient[gf[x], {x, 0, n}], {n, 0, 40}] (* Hugo Pfoertner, Oct 22 2022 *)
A108488
Expansion of 1/sqrt(1 -2*x -3*x^2 -4*x^3 +4*x^4).
Original entry on oeis.org
1, 1, 3, 9, 23, 69, 203, 601, 1815, 5493, 16731, 51225, 157367, 485093, 1499499, 4646233, 14427095, 44880981, 139849979, 436419737, 1363713015, 4266417221, 13362194571, 41891406681, 131452430999, 412835452213, 1297543367835
Offset: 0
-
Table[Sum[Binomial[n-k,k]^2*2^k,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 24 2013 *)
CoefficientList[Series[1/Sqrt[1-2x-3x^2-4x^3+4x^4],{x,0,30}],x] (* Harvey P. Dale, Apr 06 2023 *)
-
{a(n)=polcoeff( exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k) * 2^k * x^k) *x^m/m) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 31 2014
A174882
A (3/2,-1) Somos-4 sequence.
Original entry on oeis.org
1, 1, -2, -8, -16, -16, 32, 128, 256, 256, -512, -2048, -4096, -4096, 8192, 32768, 65536, 65536, -131072, -524288, -1048576, -1048576, 2097152, 8388608, 16777216, 16777216, -33554432, -134217728, -268435456, -268435456
Offset: 0
G.f. = 1 + x - 2*x^2 - 8*x^3 - 16*x^4 - 16*x^5 + 32*x^6 + 128*x^7 + ...
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-2*x)*(4*x^2+3*x+1)/(1+16*x^4))) // G. C. Greubel, Feb 21 2018
-
a[ n_] := (-1)^Quotient[n + 2, 4] 2^(n - Mod[ Quotient[n + 1, 2], 2]); (* Michael Somos, Sep 18 2014 *)
CoefficientList[Series[(1-2*x)*(4*x^2+3*x+1)/(1+16*x^4), {x,0,50}], x] (* G. C. Greubel, Feb 21 2018 *)
-
{a(n) = (-1)^((n+2) \ 4) * 2^(n - ((n+1) \ 2 % 2))}; /* Michael Somos, Jan 06 2011 */
-
x='x+O('x^30); Vec((1-2*x)*(4*x^2+3*x+1)/(1+16*x^4)) \\ G. C. Greubel, Feb 21 2018
Comments