cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 69 results. Next

A322791 Irregular triangle read by rows in which the n-th row lists the exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 12, 48, 7, 49
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2018

Keywords

Examples

			The table starts
  1
  2
  3
  2, 4
  5
  6
  7
  2, 8
  3, 9
  10
		

Crossrefs

Cf. A049419 (row lengths), A051377 (row sums).
Cf. A027750 (all divisors), A077609 (infinitary), A077610 (unitary), A222266 (bi-unitary).

Programs

  • Maple
    A322791 := proc(n)
        local expundivs ,d,isue,p,ai,bi;
        expudvs := {} ;
        for d in numtheory[divisors](n) do
            isue := true ;
            for p in numtheory[factorset](n) do
                ai := padic[ordp](n,p) ;
                bi := padic[ordp](d,p) ;
                if bi > 0 then
                    if modp(ai,bi) <>0 then
                        isue := false;
                    end if;
                else
                    isue := false ;
                end if;
            end do;
            if isue then
                expudvs := expudvs union {d} ;
            end if;
        end do:
        sort(expudvs) ;
    end proc:
    seq(op(A322791(n)),n=1..40) ; # R. J. Mathar, Mar 06 2023
  • Mathematica
    divQ[n_, m_] := (n > 0 && m>0 && Divisible[n, m]); expDivQ[n_, d_] := Module[ {f=FactorInteger[n]}, And@@MapThread[divQ, {f[[;; , 2]], IntegerExponent[ d, f[[;; , 1]]]} ]]; expDivs[1]={1}; expDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; Table[expDivs[n], {n, 1, 50}] // Flatten
  • PARI
    isexpdiv(f, d) = { my(e); for (i=1, #f~, e = valuation(d, f[i, 1]); if(!e || (e && f[i, 2] % e), return(0))); 1; }
    row(n) = {my(d = divisors(n), f = factor(n), ediv = []); if(n == 1, return([1])); for(i=2, #d, if(isexpdiv(f, d[i]), ediv = concat(ediv, d[i]))); ediv; } \\ Amiram Eldar, Mar 27 2023

A051378 Sum of (1+e)-divisors of n. Let n = Product_i p(i)^r(i) then (1+e)-sigma(n) = Product_i (1 + Sum_{s|r(i)} p(i)^s).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a051378 n = product $ zipWith sum_1e (a027748_row n) (a124010_row n)
       where sum_1e p e = 1 + sum [p ^ d | d <- a027750_row e]
    -- Reinhard Zumkeller, Mar 13 2012
  • Maple
    A051378 := proc(n)
        local a,d,p,e,sp;
        a := 1;
        for d in ifactors(n)[2] do
            p := op(1,d) ;
            e := op(2,d) ;
            sp := 1;
            for s in numtheory[divisors](e) do
                sp := sp+p^s ;
            end do:
            a := a*sp ;
        end do:
        a;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = p+1; a[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, May 04 2012 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d,f[i,1]^d)+1) \\ Charles R Greathouse IV, Nov 22 2011
    

Formula

Multiplicative with a(p^e) = 1 + Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002
a(n) = Sum_{d|n, gcd(d, n/d) = 1} A051377(d). - Daniel Suteu, Nov 01 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 + (1-1/p)*Sum_{k>=2} p^k/(p^(2*k)-1)) = 0.76636964336546210751... . - Amiram Eldar, Oct 31 2023

Extensions

Corrected and extended by Naohiro Nomoto, Apr 12 2001

A054980 Primitive e-perfect numbers: primitive elements of the e-perfect numbers (A054979).

Original entry on oeis.org

36, 1800, 2700, 17424, 1306800, 4769856, 238492800, 357739200, 54531590400
Offset: 1

Views

Author

Jud McCranie, May 29 2000

Keywords

Comments

The nonprimitive e-perfect numbers are obtained from the primitive ones by multiplying by m, if m is squarefree and relatively prime to the primitive e-perfect number.
a(10) > 10^15. - Donovan Johnson, Nov 22 2011
The following numbers also belong to this sequence; however, their actual positions are unknown: 168136940595306022660197936246988800, 11712310558743727210993873194516480000, 1307484087615221689700651798824550400000. - Andrew Lelechenko, Apr 01 2014
The number of terms with a given number of distinct prime divisors is finite (Straus and Subbarao, 1974). - Amiram Eldar, Mar 04 2021

Examples

			180 = 36*5 (nonprimitive). 252 = 36*7 (nonprimitive). 1260 = 36*5*7 (nonprimitive). 1800 = 36*5^2 (primitive, 5^2 not squarefree and coprime to 36).
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B17, pp. 110-111.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 116-117.

Crossrefs

Cf. A051377, A054979, A160134 (complement).

Programs

  • PARI
    eperfect(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d, f[i,1]^d))==2*n
    is(n)=if(!eperfect(n),0,my(f=factor(n));for(i=1,#f[,1],if(f[i,2]==1&&eperfect(n/f[i,1]),return(0)));1) \\ Charles R Greathouse IV, Nov 22 2011

Extensions

a(9) from Donovan Johnson, Nov 22 2011

A126164 Sum of the proper exponential divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 10, 0, 0, 0, 6, 5, 0, 3, 14, 0, 0, 0, 2, 0, 0, 0, 36, 0, 0, 0, 10, 0, 0, 0, 22, 15, 0, 0, 18, 7, 10, 0, 26, 0, 6, 0, 14, 0, 0, 0, 30, 0, 0, 21, 14, 0, 0, 0, 34, 0, 0, 0, 48, 0, 0, 15
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.

Examples

			The exponential divisors of 240 are 30, 60 and 240, so a(240) = 30+60 = 90.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Aug 13 2023 *)
  • PARI
    A051377(n) = { my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2], d, f[i, 1]^d)); }; \\ This function from Charles R Greathouse IV, Nov 22 2011
    A126164(n) = (A051377(n) - n); \\ Antti Karttunen, Oct 04 2017, after the given formula

Formula

a(n) = esigma(n) - n = A051377(n) - n.

A348271 a(n) is the sum of noninfinitary divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 8, 0, 0, 0, 14, 0, 9, 0, 12, 0, 0, 0, 0, 5, 0, 0, 16, 0, 0, 0, 12, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 0, 24, 18, 0, 0, 56, 7, 15, 0, 28, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 24, 42, 0, 0, 0, 36, 0, 0, 0, 45, 0, 0, 20, 40, 0, 0, 0, 84, 39
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Examples

			a(12) = 8 since 12 has 2 noninfinitary divisors, 2 and 6, and 2 + 6 = 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; a[n_]:= DivisorSigma[1,n] - isigma[n]; Array[a, 100]

Formula

a(n) = A000203(n) - A049417(n).
a(n) = 0 if and only if the number of divisors of n is a power of 2, (i.e., n is in A036537).
a(n) > 0 if and only if the number of divisors of n is not a power of 2, (i.e., n is in A162643).

A126166 Larger member of each exponential amicable pair.

Original entry on oeis.org

100548, 502740, 968436, 1106028, 1307124, 1709316, 2312604, 2915892, 3116988, 3720276, 4122468, 4323564, 4725756, 5027400, 4842180, 5329044, 5530140, 5932332, 6133428, 6535620, 6736716, 7138908, 7340004, 7943292, 8345484, 8546580, 8948772, 9753156, 10155348
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

This sequence includes the largest member of all exponential amicable pairs and does not discriminate between primitive and nonprimitive pairs.

Examples

			a(3)= 968436 because (937692,968436) is the third exponential amicable pair
		

References

  • Hagis, Peter Jr.; Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m > n && esigma[m] - m == n, AppendTo[s, m]], {n, 1, 10^7}]; s (* Amiram Eldar, May 09 2019 *)

Formula

The values of n for which esigma(m)=esigma(n)=m+n and mA051377

Extensions

Link corrected and reference added by Andrew Lelechenko, Dec 04 2011
More terms from Amiram Eldar, May 09 2019

A160135 Sum of non-exponential divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 5, 1, 8, 1, 10, 1, 10, 9, 9, 1, 15, 1, 12, 11, 14, 1, 30, 1, 16, 10, 14, 1, 42, 1, 29, 15, 20, 13, 19, 1, 22, 17, 40, 1, 54, 1, 18, 18, 26, 1, 58, 1, 33, 21, 20, 1, 60, 17, 50, 23, 32, 1, 78, 1, 34, 20, 49, 19, 78, 1, 24, 27, 74, 1, 75, 1, 40, 34, 26, 19, 90, 1, 76, 28
Offset: 1

Views

Author

Jaroslav Krizek, May 02 2009

Keywords

Comments

The non-exponential divisors d|n of a number n = p(i)^e(i) are divisors d not of the form p(i)^s(i), s(i)|e(i) for all i.

Examples

			a(8) = A000203(8) - A051377(8) = 15 - 10 = 5. a(8) = a(2^3) = (2^4-1)/(2-1) - (2^1+2^3) = 5.
		

Crossrefs

Programs

  • Maple
    lpowp := proc(n,p) local e; for e from 0 do if n mod p^(e+1) <> 0 then RETURN(e) ; fi; od: end:
    expdvs := proc(n) local a,d,nfcts,b,f,iseDiv ; a := {} ; nfcts := ifactors(n)[2] ; for d in ( numtheory[divisors](n) minus {1} ) do iseDiv := true; for f in nfcts do b := lpowp(d,op(1,f) ) ; if b = 0 or op(2,f) mod b <> 0 then iseDiv := false; fi; od: if iseDiv then a := a union {d} ; fi; od: a ; end proc:
    A051377 := proc(n) local k ; add( k, k = expdvs(n)) ; end: A160135 := proc(n) if n = 1 then 1; else numtheory[sigma][1](n)-A051377(n) ; fi; end: seq(A160135(n),n=1..120) ; # R. J. Mathar, May 08 2009
  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; a[1] = 1; a[n_] := DivisorSigma[1, n] - esigma[n]; Array[a, 100] (* Amiram Eldar, Oct 26 2021 after Jean-François Alcover at A051377 *)
  • PARI
    A051377(n) = { my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2], d, f[i, 1]^d)); }; \\ From A051377
    A160135(n) = if(1==n,n, sigma(n) - A051377(n)); \\ Antti Karttunen, Mar 04 2018

Formula

a(n) = A000203(n) - A051377(n) for n >= 2.
a(1) = 1, a(p) = 1, a(p*q) = 1 + p + q, a(p*q*...*z) = (p + 1)*(q + 1)*...*(z + 1) - p*q*...*z, for p, q,..,z = primes (A000040), p*q = product of two distinct primes (A006881), p*q*...*z = product of k (k > 0) distinct primes (A120944).
a(p^k) = (p^(k+1)-1)/(p-1)- Sum_{d|k} p^d for p = primes (A000040), p^k = prime powers A000961(n>1), k = natural numbers (A000027)>
a(p^q) = 1+(p^1-p^1)+p^2+p^3+...+p^(q-1), for p, q = primes (A000040), p^q = prime powers of primes (A053810).

Extensions

Edited by R. J. Mathar, May 08 2009

A126165 Smaller member of each exponential amicable pair.

Original entry on oeis.org

90972, 454860, 937692, 1000692, 1182636, 1546524, 2092356, 2638188, 2820132, 3365964, 3729852, 3911796, 4275684, 4548600, 4688460, 4821516, 5003460, 5367348, 5549292, 5913180, 6095124, 6459012, 6640956, 7186788, 7550676, 7732620, 8096508, 8824284, 9188172, 9370116
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

This sequence includes the smallest member of all exponential amicable pairs and does not discriminate between primitive and nonprimitive pairs.

Examples

			a(3)=937692 because (937692,968436) is the third exponential amicable pair
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m > n && esigma[m] - m == n, AppendTo[s, n]], {n, 1, 10^7}]; s (* Amiram Eldar, May 09 2019 *)

Formula

The values of m for which esigma(m)=esigma(n)=m+n and mA051377.

Extensions

More terms from Amiram Eldar, May 09 2019

A241405 Sum of modified exponential divisors: if n = Product p_i^r_i then me-sigma(x) = Product (sum p_i^s_i such that s_i+1 divides r_i+1).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 11, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 44, 26, 42, 31, 40, 30, 72, 32, 39, 48, 54, 48, 50, 38, 60, 56, 66, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 93, 72, 88, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144, 72, 110, 74, 114, 104, 100, 96, 168, 80
Offset: 1

Views

Author

Andrew Lelechenko, May 06 2014

Keywords

Comments

The modified exponential divisors of a number n = product p_i^r_i are all numbers of the form product p_i^s_i such that s_i+1 divides r_i+1 for each i.
The concept of modified exponential divisors simplifies combinatorial problems on the sum of exponential divisors A051377 such as a search of e-perfect numbers. Each primitive e-perfect number A054980 corresponds to a unique me-perfect number of smaller magnitude.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e+1, p^(#-1)&]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    A241405(n) = {my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1)))}

Formula

a(n / A007947(n)) = A051377(n).
Multiplicative with a(p^a) = sum p^b such that b+1 divides a+1.

Extensions

More terms from Antti Karttunen, Nov 23 2017
Incorrect comment removed by Amiram Eldar, Dec 14 2024

A322857 a(1) = 1; a(n) = sum of exponential unitary divisors of n for n > 1.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2018

Keywords

Comments

The exponential unitary (or e-unitary) divisors of n = Product p(i)^a(i) are all the numbers of the form Product p(i)^b(i) where b(i) is a unitary divisor of a(i).

Crossrefs

Cf. A361255, A051377, A077610, A278908 (number of exponential unitary divisors).

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, GCD[#, e/#]==1 &]; eusigma[n_] := Times @@ f @@@ FactorInteger[n]; Array[eusigma, 100]
  • PARI
    ff(p, e) = sumdiv(e, d, if (gcd(d, e/d)==1, p^d));
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = ff(f[k,1], f[k,2]); f[k,2] = 1); factorback(f); \\ Michel Marcus, Dec 29 2018

Formula

Multiplicative with a(p^e) = Sum_{d|e, gcd(d, e/d)==1} p^d.
Previous Showing 21-30 of 69 results. Next