cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A175224 a(n) = prime(n) + 8.

Original entry on oeis.org

10, 11, 13, 15, 19, 21, 25, 27, 31, 37, 39, 45, 49, 51, 55, 61, 67, 69, 75, 79, 81, 87, 91, 97, 105, 109, 111, 115, 117, 121, 135, 139, 145, 147, 157, 159, 165, 171, 175, 181, 187, 189, 199, 201, 205, 207, 219, 231, 235, 237, 241, 247, 249, 259, 265, 271, 277, 279
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2010

Keywords

Comments

a(n) = A000040(n) + 8 = A008864(n) + 7 = A052147(n) + 6 = A113395(n) + 5 = A175221(n) + 4 = A175222(n) + 3 = A139049(n) + 2 = A175223(n) + 1 = A140353(n) - 1 = A175225(n) - 2.

Crossrefs

Programs

Extensions

More terms from Vincenzo Librandi, Mar 14 2010

A175225 a(n) = prime(n) + 10.

Original entry on oeis.org

12, 13, 15, 17, 21, 23, 27, 29, 33, 39, 41, 47, 51, 53, 57, 63, 69, 71, 77, 81, 83, 89, 93, 99, 107, 111, 113, 117, 119, 123, 137, 141, 147, 149, 159, 161, 167, 173, 177, 183, 189, 191, 201, 203, 207, 209, 221, 233, 237, 239, 243, 249, 251, 261, 267, 273, 279, 281
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2010

Keywords

Comments

a(n) = A000040(n) + 10 = A008864(n) + 9 = A052147(n) + 8 = A113395(n) + 7 = A175221(n) + 6 = A175222(n) + 5 = A139049(n) + 4 = A175223(n) + 3 = A175224(n) + 2 = A140353(n) + 1.

Crossrefs

Programs

Extensions

More terms from Vincenzo Librandi, Mar 14 2010

A216620 Square array read by antidiagonals: T(n,k) = Sum_{c|n,d|k} phi(gcd(c,d)) for n>=1, k>=1.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 3, 4, 4, 3, 2, 6, 5, 6, 2, 4, 4, 6, 6, 4, 4, 2, 8, 4, 10, 4, 8, 2, 4, 4, 10, 6, 6, 10, 4, 4, 3, 8, 4, 12, 7, 12, 4, 8, 3, 4, 6, 8, 6, 8, 8, 6, 8, 6, 4, 2, 8, 8, 14, 4, 20, 4, 14, 8, 8, 2, 6, 4, 8, 9, 8, 8, 8, 8, 9, 8, 4, 6, 2, 12, 4, 12, 6
Offset: 1

Views

Author

Peter Luschny, Sep 12 2012

Keywords

Comments

T(n,n) = A060648(n) = Sum_{d|n} Dedekind_Psi(d).
T(n,1) = T(1,n) = A000005(n) = tau(n).
T(n,2) = T(2,n) = A062011(n) = 2*tau(n).
T(n+1,n) = A092517(n) = tau(n+1)*tau(n).
T(prime(n),1) = A007395(n) = 2.
T(prime(n),prime(n)) = A052147(n) = prime(n)+2.

Examples

			[----1---2---3---4---5---6---7---8---9--10--11--12]
[ 1] 1,  2,  2,  3,  2,  4,  2,  4,  3,  4,  2,  6
[ 2] 2,  4,  4,  6,  4,  8,  4,  8,  6,  8,  4, 12
[ 3] 2,  4,  5,  6,  4, 10,  4,  8,  8,  8,  4, 15
[ 4] 3,  6,  6, 10,  6, 12,  6, 14,  9, 12,  6, 20
[ 5] 2,  4,  4,  6,  7,  8,  4,  8,  6, 14,  4, 12
[ 6] 4,  8, 10, 12,  8, 20,  8, 16, 16, 16,  8, 30
[ 7] 2,  4,  4,  6,  4,  8,  9,  8,  6,  8,  4, 12
[ 8] 4,  8,  8, 14,  8, 16,  8, 22, 12, 16,  8, 28
[ 9] 3,  6,  8,  9,  6, 16,  6, 12, 17, 12,  6, 24
[10] 4,  8,  8, 12, 14, 16,  8, 16, 12, 28,  8, 24
[11] 2,  4,  4,  6,  4,  8,  4,  8,  6,  8, 13, 12
[12] 6, 12, 15, 20, 12, 30, 12, 28, 24, 24, 12, 50
.
Displayed as a triangular array:
   1,
   2, 2,
   2, 4,  2,
   3, 4,  4,  3,
   2, 6,  5,  6, 2,
   4, 4,  6,  6, 4,  4,
   2, 8,  4, 10, 4,  8, 2,
   4, 4, 10,  6, 6, 10, 4, 4,
   3, 8,  4, 12, 7, 12, 4, 8, 3,
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:= (n, k)-> add(add(phi(igcd(c,d)), c=divisors(n)), d=divisors(k)):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..14);  # Alois P. Heinz, Sep 12 2012
  • Mathematica
    t[n_, k_] := Outer[ EulerPhi[ GCD[#1, #2]]&, Divisors[n], Divisors[k]] // Flatten // Total; Table[ t[n-k+1, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
  • Sage
    def A216620(n, k) :
        cp = cartesian_product([divisors(n), divisors(k)])
        return reduce(lambda x,y: x+y, map(euler_phi, map(gcd, cp)))
    for n in (1..12): [A216620(n,k) for k in (1..12)]

A048974 Odd numbers that are the sum of 2 primes.

Original entry on oeis.org

5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, 69, 73, 75, 81, 85, 91, 99, 103, 105, 109, 111, 115, 129, 133, 139, 141, 151, 153, 159, 165, 169, 175, 181, 183, 193, 195, 199, 201, 213, 225, 229, 231, 235, 241, 243, 253, 259
Offset: 1

Views

Author

Keywords

Comments

A048974, A052147, A067187 and A088685 are very similar after dropping terms less than 13. - Eric W. Weisstein, Oct 10 2003

Crossrefs

Programs

  • Mathematica
    Select[Flatten@Table[Prime[i] + Prime[j], {i, 100}, {j, 1, i}], # < Prime[100] && OddQ[#] &] (* Robert Price, Apr 21 2025 *)

Formula

One of the primes must be 2, so this is simply the odd primes + 2.
a(n) = A065091(n) + 2. - Sean A. Irvine, Jul 15 2021

A157931 Numbers that are both the sum and the product of two primes.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 38, 39, 46, 49, 55, 58, 62, 69, 74, 82, 85, 86, 91, 94, 106, 111, 115, 118, 122, 129, 133, 134, 141, 142, 146, 158, 159, 166, 169, 178, 183, 194, 201, 202, 206, 213, 214, 218, 226, 235, 253, 254, 259, 262, 265, 274, 278
Offset: 1

Views

Author

William Weeks (dach(AT)kuci.org), Mar 09 2009

Keywords

Comments

Assuming the Goldbach conjecture, this is A001358 intersect (A005843 union A052147), since an odd number n is the sum of two primes iff n-2 is prime. - N. J. A. Sloane, Mar 14 2009
The first few terms of A001358: Semiprimes, not members of A157931 are: 35, 51, 57, 65, 77, 87, 93, 95, ..., . - Robert G. Wilson v, Mar 15 2009

Examples

			For the numbers up to 100, the solutions are 4 = (2+2) = (2*2); 6 = (3+3) = (2*3); 9 = (2+7) = (3*3); 10 = (3+7) = (2*5); 14 = (3+11) = (2*7); 15 = (2+13) = (3*5); 21 = (2+19) = (3*7); 22 = (3+19) = (2*11); 25 = (2+23) = (5*5); 26 = (3+23) = (2*13); 33 = (2+31) = (3*11); 34 = (3+31) = (2*17); 38 = (7+31) = (2*19); 39 = (2+37) = (3*13); 46 = (3+43) = (2*23); 49 = (2+47) = (7*7); 55 = (2+53) = (5*11); 58 = (5+53) = (2*29); 62 = (3+59) = (2*31); 69 = (2+67) = (3*23); 74 = (3+71) = (2*37); 82 = (3+79) = (2*41); 85 = (2+83) = (5*17); 86 = (3+83) = (2*43); 91 = (2+89) = (7*13); 94 = (5+89) = (2*47).
		

Crossrefs

Cf. A043326 Numbers n such that n is a product of two different primes and n - 2 is prime, A062721 Numbers n such that n is a product of two primes and n - 2 is prime. - Zak Seidov, Mar 15 2009

Programs

  • Haskell
    a157931 n = a157931_list !! (n-1)
    a157931_list = filter ((== 1) . a064911) a014091_list
    -- Reinhard Zumkeller, Oct 15 2014
  • Maple
    isA014091 := proc(n) for i from 1 do p := ithprime(i) ; if p > n/2 then RETURN(false); fi; if isprime(n-p) then RETURN(true) ; fi; od: end: isA001358 := proc(n) RETURN(numtheory[bigomega](n) = 2) ; end: for n from 4 to 500 do if isA001358(n) and isA014091(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Mar 15 2009
  • Mathematica
    fQ[n_] := Block[{k = 2}, While[k < n, If[ PrimeQ[n - k], Break[]]; k = NextPrime@k]; k + 1 < n]; semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; Select[ Range@ 295, fQ@# && semiPrimeQ@# &] (* Robert G. Wilson v, Mar 15 2009 *)
    Select[Union[Flatten[Table[Prime[i] + Prime[j], {i, 50}, {j, 50}]]], PrimeOmega[#] == 2 &] (* Alonso del Arte, Feb 08 2013 *)
    Union[Select[Total/@Tuples[Prime[Range[60]],2],PrimeOmega[#]==2&]] (* Harvey P. Dale, Jul 27 2015 *)

Formula

A014091 INTERSECT A001358. - R. J. Mathar, Mar 15 2009

Extensions

Edited by N. J. A. Sloane, Mar 14 2009
Extended by R. J. Mathar and Robert G. Wilson v, Mar 15 2009

A117530 Triangle read by rows: T(n,k) = k^2 - k + prime(n), 1<=k<=n.

Original entry on oeis.org

2, 3, 5, 5, 7, 11, 7, 9, 13, 19, 11, 13, 17, 23, 31, 13, 15, 19, 25, 33, 43, 17, 19, 23, 29, 37, 47, 59, 19, 21, 25, 31, 39, 49, 61, 75, 23, 25, 29, 35, 43, 53, 65, 79, 95, 29, 31, 35, 41, 49, 59, 71, 85, 101, 119, 31, 33, 37, 43, 51, 61, 73, 87, 103, 121, 141, 37, 39, 43, 49, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 25 2006

Keywords

Comments

A117531 gives the number of primes in the n-th row;
if T(n,1) is a Lucky Number of Euler then A117531(n)=n, see A014556.

Examples

			T(5,k)=A048058(k)=A048059(k), 1<=k<=5: T(5,1)=A014556(4)=11;
T(7,k)=A007635(k), 1<=k<=7: T(7,1)=A014556(5)=17;
T(13,k)=A005846(k), 1<=k<=13: T(13,1)=A014556(6)=41.
		

Crossrefs

Programs

Formula

T(n,1) = A000040(k).
T(n,2) = A052147(k) for k>1.
For 1

A049234 Number of divisors of prime(n) + 2.

Original entry on oeis.org

3, 2, 2, 3, 2, 4, 2, 4, 3, 2, 4, 4, 2, 6, 3, 4, 2, 6, 4, 2, 6, 5, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 2, 4, 2, 6, 4, 8, 3, 6, 2, 4, 2, 8, 2, 4, 4, 9, 2, 8, 4, 2, 6, 4, 4, 4, 2, 8, 6, 2, 8, 4, 4, 2, 12, 4, 6, 4, 2, 8, 4, 3, 6, 8, 4, 8, 4, 8, 4, 4, 2, 6, 2, 8, 9, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 4, 4, 2, 12, 4, 6, 4, 4
Offset: 1

Author

Keywords

Examples

			a(10) = d(prime(10)+2) = d(29+2) = d(29) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,Prime[n]+2],{n,1,103}]
  • PARI
    a(n) = numdiv(prime(n)+2); \\ Michel Marcus, Dec 15 2013

Formula

a(n) = A000005(A052147(n)). - Amiram Eldar, Feb 16 2025

A065342 Triangle of sum of two primes: prime(n)+prime(k) with n >= k >= 1.

Original entry on oeis.org

4, 5, 6, 7, 8, 10, 9, 10, 12, 14, 13, 14, 16, 18, 22, 15, 16, 18, 20, 24, 26, 19, 20, 22, 24, 28, 30, 34, 21, 22, 24, 26, 30, 32, 36, 38, 25, 26, 28, 30, 34, 36, 40, 42, 46, 31, 32, 34, 36, 40, 42, 46, 48, 52, 58, 33, 34, 36, 38, 42, 44, 48, 50, 54, 60, 62, 39, 40, 42, 44, 48
Offset: 1

Author

Henry Bottomley, Oct 30 2001

Keywords

Examples

			Sequence starts 2+2; 3+2, 3+3; 5+2, 5+3, 5+5; etc. i.e. 4; 5,6; 7,8,10; ...
Triangle begins:
   4;
   5,  6;
   7,  8, 10;
   9, 10, 12, 14;
  13, 14, 16, 18, 22;
  ...
		

Crossrefs

Cf. A052147 (left edge), A100484 (right edge), A000040.
Cf. A087112.
Cf. A065305.

Programs

  • Haskell
    import Data.List (inits)
    a065342 n k = a065342_tabl !! (n-1) !! (k-1)
    a065342_row n = a065342_tabl !! (n-1)
    a065342_tabl = zipWith (map . (+)) a000040_list $ tail $ inits a000040_list
    -- Reinhard Zumkeller, Aug 02 2015, Jan 30 2012
    
  • PARI
    row(n) = vector(n, k, prime(n)+prime(k)); \\ Michel Marcus, Sep 10 2021

Formula

T(n, k) = 2*A065305(n, k) [but note different offset].

A088685 Records for the sum-of-primes function sopfr(n) if sopfr(prime) is taken to be 0.

Original entry on oeis.org

0, 4, 5, 6, 7, 9, 10, 13, 15, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, 69, 73, 75, 81, 85, 91, 99, 103, 105, 109, 111, 115, 129, 133, 139, 141, 151, 153, 159, 165, 169, 175, 181, 183, 193, 195, 199, 201, 213, 225, 229, 231, 235, 241, 243, 253, 259, 265, 271
Offset: 1

Author

Eric W. Weisstein, Oct 05 2003

Keywords

Comments

A048974, A052147 and A067187 are very similar after dropping terms less than 13. - Eric W. Weisstein, Oct 10 2003

Crossrefs

Programs

  • Mathematica
    Union@ FoldList[Max, Table[Total@ Flatten@ Map[ConstantArray[#1, #2] /. 1 -> 0 & @@ # &, FactorInteger@ n] - n Boole[PrimeQ@ n], {n, 540}]] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    sopfr(k) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]);
    lista(nn) = {my(record = -1); for (n=1, nn, if (! isprime(n), if ((x=sopfr(n)) > record, record = x; print1(record, ", "));););} \\ Michel Marcus, Jun 29 2017
    
  • Python
    from sympy import factorint, isprime
    def sopfr(n):
        f=factorint(n)
        return sum([i*f[i] for i in f])
    l=[]
    record=-1
    for n in range(1, 501):
        if not isprime(n):
            x=sopfr(n)
            if x>record:
                record=x
                l.append(record)
    print(l) # Indranil Ghosh, Jun 29 2017

A139690 a(n) = A109611(n) + 2.

Original entry on oeis.org

4, 5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 39, 43, 49, 55, 61, 69, 73, 85, 91, 103, 109, 111, 115, 129, 133, 139, 141, 151, 159, 169, 181, 183, 193, 199, 201, 213, 229, 235, 241, 253, 259, 265, 271, 283, 295, 309, 313, 319, 339, 349, 355, 361, 381, 391, 403, 411
Offset: 1

Author

Reinhard Zumkeller, Apr 29 2008

Keywords

Crossrefs

Intersection of A052147 and A037143; A006512 is a subsequence.
Cf. A109611.

Programs

  • Mathematica
    Cases[Import["https://oeis.org/A109611/b109611.txt", "Table"], {, }][[All, 2]] + 2 (* Robert Price, Apr 19 2025 *)
  • PARI
    list(lim)=my(v=List(),t); forprime(p=2,lim\2, forprime(q=2,min(p,lim\p), if(isprime(t=p*q-2), listput(v,t+2)))); t=2; forprime(p=3,lim, if(p-t==2, listput(v,p)); t=p); Set(v) \\ Charles R Greathouse IV, Jan 19 2017

Formula

A010051(a(n)) = A139689(n); A064911(a(n)) = 1 - A139689(n);
A001222(a(n)) = 2 - A139689(n).
Previous Showing 11-20 of 31 results. Next