cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A005572 Number of walks on cubic lattice starting and finishing on the xy plane and never going below it.

Original entry on oeis.org

1, 4, 17, 76, 354, 1704, 8421, 42508, 218318, 1137400, 5996938, 31940792, 171605956, 928931280, 5061593709, 27739833228, 152809506582, 845646470616, 4699126915422, 26209721959656, 146681521121244, 823429928805936
Offset: 0

Views

Author

Keywords

Comments

Also number of paths from (0,0) to (n,0) in an n X n grid using only Northeast, East and Southeast steps and the East steps come in four colors. - Emeric Deutsch, Nov 03 2002
Number of skew Dyck paths of semilength n+1 with the left steps coming in two colors. - David Scambler, Jun 21 2013
Number of 2-colored Schroeder paths from (0,0) to (2n+2,0) with no level steps H=(2,0) at an even level. There are two ways to color an H-step at an odd level. Example: a(1)=4 because we have UUDD, UHD (2 choices) and UDUD. - José Luis Ramírez Ramírez, Apr 27 2015

Examples

			a(3) = 76 = sum of top row terms of M^3; i.e., (37 + 29 + 9 + 1).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Binomial transform of A002212. Sequence shifted right twice is A025228.

Programs

  • Maple
    a := n -> simplify(2^n*hypergeom([3/2, -n], [3], -2)):
    seq(a(n), n=0..21); # Peter Luschny, Feb 03 2015
    a := n -> simplify(GegenbauerC(n, -n-1, -2))/(n+1):
    seq(a(n), n=0..21); # Peter Luschny, May 09 2016
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==4,a[n]==((2n+1)a[n-1]-3(n-1)a[n-2]) 4/(n+2)}, a[n],{n,30}] (* Harvey P. Dale, Oct 04 2011 *)
    a[n_]:=If[n==0,1,Coefficient[(1+4x+x^2)^(n+1),x^n]/(n+1)]
    Table[a[n],{n,0,40}] (* Emanuele Munarini, Apr 06 2012 *)
  • Maxima
    a(n):=coeff(expand((1+4*x+x^2)^(n+1)),x^n)/(n+1); makelist(a(n),n,0,12); /* Emanuele Munarini, Apr 06 2012 */
    
  • PARI
    a(n)=polcoeff((1-4*x-sqrt(1-8*x+12*x^2+x^3*O(x^n)))/2,n+2)
    
  • PARI
    { A005572(n) = sum(k=0,n\2, binomial(n,2*k) * binomial(2*k,k) * 4^(n-2*k) / (k+1) ) } /* Max Alekseyev, Feb 02 2015 */
    
  • PARI
    {a(n)=sum(k=0,n, binomial(n,k) * 2^(n-k) * binomial(2*k+2, k)/(k+1) )}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 02 2015
    
  • Sage
    def A005572(n):
        A108198 = lambda n,k: (-1)^k*catalan_number(k+1)*rising_factorial(-n,k)/factorial(k)
        return sum(A108198(n,k)*2^(n-k) for k in (0..n))
    [A005572(n) for n in range(22)] # Peter Luschny, Feb 05 2015

Formula

Generating function A(x) satisfies 1 + (xA)^2 = A - 4xA.
a(0) = 1 and, for n > 0, a(n) = 4a(n-1) + Sum_{i=1..n-1} a(i-1)*a(n-i-1). - John W. Layman, Jan 07 2000
G.f.: (1 - 4*x - sqrt(1 - 8*x + 12*x^2))/(2*x^2).
D-finite with recurrence: a(n) = ((2*n+1)*a(n-1) - 3*(n-1)*a(n-2))*4/(n+2), n > 0.
a(m+n) = Sum_{k>=0} A052179(m, k)*A052179(n, k) = A052179(m+n, 0). - Philippe Deléham, Sep 15 2005
a(n) = 4*a(n-1) + A052177(n-1) = A052179(n, 0) = 6*A005573(n)-A005573(n-1) = Sum_{j=0..floor(n/2)} 4^(n-2*j)*C(n, 2*j)*C(2*j, j)/(j+1). - Henry Bottomley, Aug 23 2001
a(n) = Sum_{k=0..n} A097610(n,k)*4^k. - Philippe Deléham, Dec 03 2009
Let A(x) be the g.f., then B(x) = 1 + x*A(x) = 1 + 1*x + 4*x^2 + 17*x^3 + ... = 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-2*x) (continued fraction); more generally B(x) = C(x/(1-2*x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = sum of top row terms of M^n, M = an infinite square production matrix as follows:
3, 1, 0, 0, ...
1, 3, 1, 0, ...
1, 1, 3, 1, ...
1, 1, 1, 3, ...
... (End)
a(n) ~ 3*6^(n+1/2)/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Oct 05 2012
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * binomial(2k,k) * 4^(n-2k) / (k+1). - Max Alekseyev, Feb 02 2015
From Paul D. Hanna, Feb 02 2015: (Start)
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n-k) * binomial(2*k+2, k)/(k+1).
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n-k) * A000108(k+1).
a(n) = [x^n] (1 + 4*x + x^2)^(n+1) / (n+1).
G.f.: (1/x) * Series_Reversion( x/(1 + 4*x + x^2) ). (End)
a(n) = 2^n*hypergeom([3/2, -n], [3], -2). - Peter Luschny, Feb 03 2015
a(n) = 4^n*hypergeom([-n/2, (1-n)/2], [2], 1/4). - Robert Israel, Feb 04 2015
a(n) = Sum_{k=0..n} A108198(n,k)*2^(n-k). - Peter Luschny, Feb 05 2015
a(n) = 2*(12^(n/2))*(n!/(n+2)!)*GegenbauerC(n, 3/2,2/sqrt(3)), where GegenbauerC are Gegenbauer polynomials in Maple notation. This is a consequence of Robert Israel's formula. - Karol A. Penson, Feb 20 2015
a(n) = (2^(n+1)*3^((n+1)/2)*P(n+1,1,2/sqrt(3)))/((n+1)*(n+2)) where P(n,u,x) are the associated Legendre polynomials of the first kind. - Peter Luschny, Feb 24 2015
a(n) = -6^(n+1)*sqrt(3)*Integral{t=0..Pi}(cos(t)*(2+cos(t))^(-n-2))/(Pi*(n+2)). - Peter Luschny, Feb 24 2015
From Karol A. Penson and Wojciech Mlotkowski, Mar 16 2015: (Start)
Integral representation as the n-th moment of a positive function defined on a segment x=[2, 6]. This function is the Wigner's semicircle distribution shifted to the right by 4. This representation is unique. In Maple notation,
a(n) = int(x^n*sqrt(4-(x-4)^2)/(2*Pi), x=2..6),
a(n) = 2*6^n*Pochhammer(3/2, n)*hypergeom([-n, 3/2], [-n-1/2], 1/3)/(n+2)!
(End)
a(n) = GegenbauerC(n, -n-1, -2)/(n+1). - Peter Luschny, May 09 2016
E.g.f.: exp(4*x) * BesselI(1,2*x) / x. - Ilya Gutkovskiy, Jun 01 2020
From Peter Bala, Aug 18 2021: (Start)
G.f. A(x) = 1/(1 - 2*x)*c(x/(1 - 2*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. Cf. A129400.
Conjecture: a(n) is even except for n of the form 2*(2^k - 1). [added Feb 03: the conjecture follows from the formula a(n) = Sum_{k = 0..n} 2^(n-k)*binomial(n, k)*Catalan(k+1) given above.] (End)
From Peter Bala, Feb 03 2024: (Start)
G.f.: 1/(1 - 2*x) * c(x/(1 - 2*x))^2 = 1/(1 - 6*x) * c(-x/(1 - 6*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n) = 6^n * Sum_{k = 0..n} (-6)^(-k)*binomial(n, k)*Catalan(k+1).
a(n) = 6^n * hypergeom([-n, 3/2], [3], 2/3). (End)

Extensions

Additional comments from Michael Somos, Jun 10 2000

A124575 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (2,4,4,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 16, 30, 10, 1, 62, 146, 71, 14, 1, 270, 717, 444, 128, 18, 1, 1257, 3582, 2621, 974, 201, 22, 1, 6096, 18206, 15040, 6718, 1800, 290, 26, 1, 30398, 93960, 85084, 43712, 14208, 2986, 395, 30, 1, 154756, 491322, 478008, 274140, 103530
Offset: 0

Views

Author

Keywords

Comments

Column k=0 yields A033543 (2nd binomial transform of the sequence A000957(n+1)). Row sums yield A133158. [Corrected by Philippe Deléham, Oct 24 2007, Dec 05 2009]
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) +y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Row 2 is (5,6,1) because M[3]= [2,1,0;1,4,1;0,1,4] and M[3]^2=[5,6,1;6,18,8;1,8,17].
Triangle starts:
    1;
    2,   1;
    5,   6,   1;
   16,  30,  10,   1;
   62, 146,  71,  14,  1;
  270, 717, 444, 128, 18, 1;
		

Crossrefs

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 2 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 2,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
  • Mathematica
    M[n_] := SparseArray[{{1, 1} -> 2, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)

Formula

T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k-1) for k >= 2.
Sum_{k=0..n} T(n,k)*(3*k+1) = 6^n. - Philippe Deléham, Mar 27 2007
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A033543(m+n). - Philippe Deléham, Nov 22 2009

Extensions

Edited by N. J. A. Sloane, Dec 04 2006

A126075 Triangle T(n,k), 0 <= k <= n, read by rows, defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 12, 6, 2, 1, 30, 14, 7, 2, 1, 74, 37, 16, 8, 2, 1, 185, 90, 45, 18, 9, 2, 1, 460, 230, 108, 54, 20, 10, 2, 1, 1150, 568, 284, 128, 64, 22, 11, 2, 1, 2868, 1434, 696, 348, 150, 75, 24, 12, 2, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 02 2007

Keywords

Comments

Riordan array (c(x^2)/(1-2xc(x^2)),xc(x^2)) where c(x)=g.f. of Catalan numbers A000108. - Philippe Deléham, Mar 18 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
     1;
     2,    1;
     5,    2,   1;
    12,    6,   2,   1;
    30,   14,   7,   2,   1;
    74,   37,  16,   8,   2,  1;
   185,   90,  45,  18,   9,  2,  1;
   460,  230, 108,  54,  20, 10,  2,  1;
  1150,  568, 284, 128,  64, 22, 11,  2, 1;
  2868, 1434, 696, 348, 150, 75, 24, 12, 2, 1;
		

Crossrefs

Programs

  • Maple
    A126075 := proc (n, k)
    add( 2^(n-k-2*j)*binomial(n, j), j = 0..floor((n-k)/2) ) - add( 2^(n-k-2-2*j)*binomial(n, j), j = 0..floor((n-k-2)/2) )
    end proc:
    # display sequence in triangular form
    for n from 0 to 10 do seq(A126075(n, k), k = 0..n) end do;
    # Peter Bala, Feb 20 2018
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 2, 0], {n, 0, 49}, {k, 0, n}] // Flatten  (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A127358(n). T(n,0)=A054341(n).
Sum_{k=0..n} T(n,k)*(-k+1) = 2^n. - Philippe Deléham, Mar 25 2007
From Peter Bala, Feb 20 2018: (Start)
T(n,k) = Sum_{j = 0..floor((n-k)/2)} 2^(n-k-2*j)*binomial(n, j) - Sum_{j = 0..floor((n-k-2)/2)} 2^(n-k-2-2*j)*binomial(n, j), 0 <= k <= n. - Peter Bala, Feb 20 2018
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 - x^2)/(1 - 2*x) * (1 + x^2)^n about 0. For example, for n = 4, (1 - x^2)/(1 - 2*x) * (1 + x^2)^4 = (30*x^4 + 14*x*3 + 7*x^2 + 2*x + 1) + O(x^5). (End)

A110877 Triangle T(n,k), 0 <= k <= n, read by rows, defined by: T(0,0) = 1, T(n,k) = 0 if n= 1: T(n,k) = T(n-1,k-1) + x*T(n-1,k) + T(n-1,k+1) with x = 3.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 6, 15, 7, 1, 21, 58, 37, 10, 1, 79, 232, 179, 68, 13, 1, 311, 954, 837, 396, 108, 16, 1, 1265, 4010, 3861, 2133, 736, 157, 19, 1, 5275, 17156, 17726, 10996, 4498, 1226, 215, 22, 1, 22431, 74469, 81330, 55212, 25716, 8391, 1893
Offset: 0

Views

Author

Philippe Deléham, Sep 19 2005

Keywords

Comments

Similar to A064189 (x = 1) and to A039599 (x = 2).
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Row sums yield A126568. - Philippe Deléham, Oct 10 2007
5^n = (n-th row terms) dot (first n+1 terms in the series (1, 4, 7, 10, ...)). Example for row 4: 5^4 = 625 = (21, 58, 37, 10, 1) dot (1, 4, 7, 10, 13) = (21 + 232 + 259 + 100 + 13). - Gary W. Adamson, Jun 15 2011
Riordan array (2/(1+x+sqrt(1-6*x+5*x^2)), (1-3*x-sqrt(1-6*x+5*x^2))/(2*x)). - Philippe Deléham, Mar 04 2013

Examples

			Triangle begins:
      1;
      1,     1;
      2,     4,     1;
      6,    15,     7,     1;
     21,    58,    37,    10,     1;
     79,   232,   179,    68,    13,    1;
    311,   954,   837,   396,   108,   16,    1;
   1265,  4010,  3861,  2133,   736,  157,   19,   1;
   5275, 17156, 17726, 10996,  4498, 1226,  215,  22,  1;
  22431, 74469, 81330, 55212, 25716, 8391, 1893, 282, 25, 1;
  ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  1, 1;
  1, 3, 1;
  0, 1, 3, 1;
  0, 0, 1, 3, 1;
  0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1;
  ... (End)
		

Crossrefs

The inverse of A126126.

Programs

  • Maple
    A110877 := proc(n,k)
        if k > n then
            0;
        elif n= 0 then
            1;
        elif k = 0 then
            procname(n-1,0)+procname(n-1,1) ;
        else
            procname(n-1,k-1)+3*procname(n-1,k)+procname(n-1,k+1) ;
        end if;
    end proc: # R. J. Mathar, Sep 06 2013
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 1, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

T(n, 0) = A033321(n) and for k >= 1: T(n, k) = Sum_{j>=1} T(n-j, k-1)*A002212(j).
Sum_{k=0..n} T(m, k)*T(n, k) = T(m+n, 0) = A033321(m+n).
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and (1,3,3,3,...) in the main diagonal. - Gary W. Adamson, Dec 17 2006
Sum_{k=0..n} T(n,k)*(3*k+1) = 5^n. - Philippe Deléham, Feb 26 2007
Sum_{k=0..n} T(n,k) = A126568(n). - Philippe Deléham, Oct 10 2007

A125906 Riordan array (1/(1 + 5*x + x^2), x/(1 + 5*x + x^2))^(-1); inverse of Riordan array A123967.

Original entry on oeis.org

1, 5, 1, 26, 10, 1, 140, 77, 15, 1, 777, 540, 153, 20, 1, 4425, 3630, 1325, 254, 25, 1, 25755, 23900, 10509, 2620, 380, 30, 1, 152675, 155764, 79065, 23989, 4550, 531, 35, 1, 919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 04 2007

Keywords

Comments

T(0)=A053121, T(1)=A064189, T(2)=A039598, T(3)=A091965, T(4)=A052179.
Triangle read by rows: T(n,k) = number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and five types of steps H=(1,0); example: T(3,1)=77 because we have UDU, UUD, 25 HHU paths, 25 HUH paths and 25 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
7^n = (n-th row terms) dot (first n+1 terms in 1,2,3,...). Example: 7^3 = 343 = (140, 77, 15, 1) dot (1, 2, 3, 4) = (140 + 154 + 45 + 4) = 343. - Gary W. Adamson, Jun 17 2011
A subset of the "family of triangles" (Deleham comment of Sep 25 2007) is the succession of binomial transforms beginning with triangle A053121, (0,0); giving -> A064189, (1,1); -> A039598, (2,2); -> A091965, (3,3); -> A052179, (4,4); -> A125906, (5,5) ->, etc; generally the binomial transform of the triangle generated from (n,n) = that generated from ((n+1),(n+1)). - Gary W. Adamson, Aug 03 2011
Riordan array (f(x), x*f(x)) where f(x) is the o.g.f. of A182401. - Philippe Deléham, Mar 04 2013

Examples

			Triangle begins
       1;
       5,       1;
      26,      10,      1;
     140,      77,     15,      1;
     777,     540,    153,     20,     1;
    4425,    3630,   1325,    254,    25,    1;
   25755,   23900,  10509,   2620,   380,   30,   1;
  152675,  155764,  79065,  23989,  4550,  531,  35,  1;
  919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins
  5, 1;
  1, 5, 1,;
  0, 1, 5, 1;
  0, 0, 1, 5, 1;
  0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 5, 1; (End)
		

Crossrefs

Cf. A182401.

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,  T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 5, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Triangle T(5) where T(x) is defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + x*T(n-1,k) + T(n-1,k+1). Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0). Sum_{k=0..n} T(n,k) = A122898(n).
Sum_{k=0..n} T(n,k)*(k+1) = 7^n. - Philippe Deléham, Mar 26 2007
T(n,0) = A182401(n). - Philippe Deléham, Mar 04 2013
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + 5*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

A126093 Inverse binomial matrix applied to A110877.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 6, 4, 1, 6, 18, 15, 6, 1, 18, 57, 54, 28, 8, 1, 57, 186, 193, 118, 45, 10, 1, 186, 622, 690, 474, 218, 66, 12, 1, 622, 2120, 2476, 1856, 976, 362, 91, 14, 1, 2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2007

Keywords

Comments

Diagonal sums are A065601. - Philippe Deléham, Mar 05 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
     1;
     0,    1;
     1,    2,    1;
     2,    6,    4,    1;
     6,   18,   15,    6,    1;
    18,   57,   54,   28,    8,    1;
    57,  186,  193,  118,   45,   10,   1;
   186,  622,  690,  474,  218,   66,  12,   1;
   622, 2120, 2476, 1856,  976,  362,  91,  14,  1;
  2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1;
Production matrix begins
  0, 1;
  1, 2, 1;
  0, 1, 2, 1;
  0, 0, 1, 2, 1;
  0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 2, 1;
- _Philippe Deléham_, Nov 07 2011
		

Programs

  • Mathematica
    T[0, 0, x_, y_]:= 1; T[n_, 0, x_, y_]:= x*T[n-1,0,x,y] + T[n-1,1,x,y]; T[n_, k_, x_, y_]:= T[n, k, x, y]= If[k<0 || k>n, 0, T[n-1,k-1,x,y] + y*T[n-1,k,x,y] + T[n-1,k+1,x,y]]; Table[T[n,k,0,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 21 2017 *)
  • Sage
    @CachedFunction
    def T(n, k, x, y):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        elif (k==0): return x*T(n-1,0,x,y) + T(n-1,1,x,y)
        else: return T(n-1,k-1,x,y) + y*T(n-1,k,x,y) + T(n-1,k+1,x,y)
    [[T(n,k,0,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020

Formula

Triangle T(n,k), 0<=k<=n, read by rows defined by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1.
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A000957(m+n+1).
Sum_{k=0..n-1} T(n,k) = A026641(n), for n>=1. - Philippe Deléham, Mar 05 2007
Sum_{k=0..n} T(n,k)*(3k+1) = 4^n. - Philippe Deléham, Mar 22 2007

A126954 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 34, 15, 5, 1, 117, 54, 21, 6, 1, 405, 192, 81, 28, 7, 1, 1407, 678, 301, 116, 36, 8, 1, 4899, 2386, 1095, 453, 160, 45, 9, 1, 17083, 8380, 3934, 1708, 658, 214, 55, 10, 1, 59629, 29397, 14022, 6300, 2580, 927, 279, 66, 11, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
     1;
     3,    1;
    10,    4,    1;
    34,   15,    5,   1;
   117,   54,   21,   6,   1;
   405,  192,   81,  28,   7,  1;
  1407,  678,  301, 116,  36,  8, 1;
  4899, 2386, 1095, 453, 160, 45, 9, 1;
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A126932(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A059738(m+n).
Sum_{k=0..n} T(n,k)*(-k+1) = 3^n. - Philippe Deléham, Mar 26 2007

A064613 Second binomial transform of the Catalan numbers.

Original entry on oeis.org

1, 3, 10, 37, 150, 654, 3012, 14445, 71398, 361114, 1859628, 9716194, 51373180, 274352316, 1477635912, 8016865533, 43773564294, 240356635170, 1326359740956, 7351846397334, 40913414754324, 228508350629892
Offset: 0

Views

Author

Karol A. Penson, Sep 24 2001

Keywords

Comments

Exponential convolution of Catalan numbers and powers of 2. - Vladeta Jovovic, Dec 03 2004
Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 4 colors. Example: a(3)=37 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 4 paths of shape UHD. - Emeric Deutsch, May 02 2011
a(n) is the number of Schroeder paths of semilength n in which the (2,0)-steps come in 2 colors and having no (2,0)-steps at levels 1,3,5,... - José Luis Ramírez Ramírez, Mar 30 2013
From Tom Copeland, Nov 08 2014: (Start)
This array is one of a family of Catalan arrays related by compositions of the special fractional linear (Möbius) transformations P(x,t)=x/(1-t*x); its inverse Pinv(x,t) = P(x,-t); and an o.g.f. of the Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2; and its inverse Cinv(x) = x*(1-x). (Cf A126930.)
O.g.f.: G(x) = C[P[P(x,-1),-1]] = C[P(x,-2)] = (1-sqrt(1-4*x/(1-2*x)))/2 = x*A064613(x).
Ginv(x) = Pinv[Cinv(x),-2] = P[Cinv(x),2] = x(1-x)/[1+2x(1-x)] = (x-x^2)/[1+2(x-x^2)] = x - 3 x^2 + 8 x^3 - ... is -A155020(-x) ignoring first term there. (Cf. A146559, A125145.)(End)

Crossrefs

Programs

  • Magma
    I:=[3,10]; [1] cat [n le 2 select I[n] else ((8*n-2)*Self(n-1)-(12*n-12)*Self(n-2))div (n+1): n in [1..30]]; // Vincenzo Librandi, Jan 23 2017
  • Mathematica
    CoefficientList[Series[(1-Sqrt[(1-6*x)/(1-2*x)])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2013 *)
    a[n_] := 2^n Hypergeometric2F1[1/2, -n, 2, -2];
    Array[a, 22, 0] (* Peter Luschny, Jan 27 2020 *)
  • PARI
    x='x+O('x^66); Vec((1-sqrt((1-6*x)/(1-2*x)))/(2*x)) /* Joerg Arndt, Mar 31 2013 */
    

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k, k)*2^(n-k)/(k+1).
a(n) = 2^n*hypergeom([1/2, -n], [2], -2).
G.f.: (1-sqrt((1-6*x)/(1-2*x)))/(2*x). - Vladeta Jovovic, May 03 2003
With offset 1: a(1) = 1, a(n) = 2^(n-1) + Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
D-finite with recurrence (n+1)*a(n) = (8*n-2)*a(n-1) - (12*n-12)*a(n-2). - Vladeta Jovovic, Jul 16 2004
E.g.f.: exp(4*x)*(BesselI(0, 2*x) - BesselI(1, 2*x)). - Vladeta Jovovic, Dec 03 2004
Inverse binomial transform of A104455. - Philippe Deléham, Nov 30 2007
G.f.: 1/(1-3*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-... (continued fraction). - Paul Barry, Jul 02 2009
a(n) = Sum_{0<=k<=n} A052179(n,k)*(-1)^k. - Philippe Deléham, Nov 28 2009
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = the upper left term in M^n, M = an infinite square production matrix as follows:
3, 1, 0, 0, ...
1, 3, 1, 0, ...
1, 1, 3, 1, ...
1, 1, 1, 3, ...
... (End)
a(n) ~ 2^(n-3/2)*3^(n+3/2)/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Jun 29 2013
G.f. A(x) satisfies: A(x) = 1/(1 - 2*x) + x * A(x)^2. - Ilya Gutkovskiy, Jun 30 2020

Extensions

Name clarified using a comment of Vladeta Jovovic by Peter Bala, Jan 27 2020

A124733 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (2,3,3,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 15, 21, 8, 1, 51, 86, 46, 11, 1, 188, 355, 235, 80, 14, 1, 731, 1488, 1140, 489, 123, 17, 1, 2950, 6335, 5397, 2730, 875, 175, 20, 1, 12235, 27352, 25256, 14462, 5530, 1420, 236, 23, 1, 51822, 119547, 117582, 74172, 32472, 10026, 2151, 306, 26, 1
Offset: 1

Views

Author

Keywords

Comments

With a different offset: Triangle T(n,k), 0<=k<=n, read by rows given by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=2*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+3*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
Equals A007318*A039599 (when written as lower triangular matrix). - Philippe Deléham, Jun 16 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
5^n = (n-th row terms) dot (first n+1 odd integers). Example: 5^4 = 625 = (51, 86, 46, 11, 1) dot (1, 3, 5, 7, 9) = (51 + 258 + 230 + 77 + 9) = 625. [Gary W. Adamson, Jun 13 2011]

Examples

			Row 3 is (5,5,1) because M[3]=[2,1,0;1,3,1;0,1,3] and M[3]^2=[5,5,1;5,11,6;1,6,10].
Triangle starts:
1;
2, 1;
5, 5, 1;
15, 21, 8, 1;
51, 86, 46, 11, 1;
188, 355, 235, 80, 14, 1;
		

Crossrefs

Cf. A110877, A091965, A002212, A007317, A026375 (row sums).

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 2 elif i=j then 3 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 2,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) + GegenbauerC(n-k-1,-n+1,3/2)): seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,  T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 2, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} (-1)^(n-k)*T(n,k) = (-1)^n. - Philippe Deléham, Feb 27 2007
Sum_{k=0..n} T(n,k)*(2*k+1) = 5^n. - Philippe Deléham, Mar 27 2007
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) + GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
From Peter Bala, Sep 06 2022: (Start)
The following assume the row and column indexing start at 0.
Riordan array (f(x), x*g(x)), where f(x) = ( 1 - sqrt((1 - 5*x)/(1 - x)) )/(2*x) = 1 + 2*x + 5*x^2 + 15*x^3 + 51*x^4 + ... is the o.g.f. of A007317 and g(x) = ( 1 - 3*x - sqrt(1 - 6*x + 5*x^2) )/(2*x^2) = 1 + 3*x + 10*x^2 + 36*x^3 + 137*x^4 + .... See A002212.
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x)*(1 + 3*x + x^2)^n expanded about the point x = 0.
T(n,k) = a(n,k) - a(n,k+1), where a(n,k) = Sum_{j = 0..n} binomial(n,j)* binomial(j,n-k-j)*3^(2*j+k-n). (End)

Extensions

Edited by N. J. A. Sloane, Dec 04 2006

A124576 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (1,4,4,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 1, 1, 2, 5, 1, 7, 23, 9, 1, 30, 108, 60, 13, 1, 138, 522, 361, 113, 17, 1, 660, 2587, 2079, 830, 182, 21, 1, 3247, 13087, 11733, 5581, 1579, 267, 25, 1, 16334, 67328, 65600, 35636, 12164, 2672, 368, 29, 1, 83662, 351246, 365364, 220308, 86964, 23220, 4173
Offset: 1

Views

Author

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows given by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+4*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Row 3 is (2,5,1) because M[3]=[1,1,0;1,4,1;0,1,4] and M[3]^2=[2,5,1;5,18,8;1,8,17].
Triangle starts:
1;
1, 1;
2, 5, 1;
7, 23, 9, 1;
30, 108, 60, 13, 1;
138, 522, 361, 113, 17, 1;
		

Crossrefs

Cf. A124575, A124574, A052179, A227081 (row sums).

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 1 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 1,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    # alternative
    A124576_row := proc(n)
        if n = 0 then
            return [1] ;
        else
            M := Matrix(n,n) ;
            M[1,1] := 1;
            for c from 2 to n do
                if c = 2 then
                    M[1,c] := 1;
                else
                    M[1,c] := 0;
                end if;
            end do:
            for r from 2 to n do
                for c from 1 to n do
                    if r = c then
                        M[r,c] := 4;
                    elif abs(r-c) = 1 then
                        M[r,c] := 1;
                    else
                        M[r,c] := 0;
                    end if;
                end do:
            end do:
            LinearAlgebra[MatrixPower](M,n-1) ;
            return [seq(%[1,r],r=1..n)] ;
        end if;
    end proc:
    for n from 0 to 10 do
        A124576_row(n) ;
        print(%) ;
    end do: # R. J. Mathar, May 20 2025
  • Mathematica
    M[n_] := SparseArray[{{1, 1} -> 1, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)

Formula

Sum_{k=0..n} T(n,k)*(4*k+1) = 6^n. - Philippe Deléham, Mar 27 2007

Extensions

Edited by N. J. A. Sloane, Dec 04 2006
Previous Showing 11-20 of 33 results. Next