A163978
a(n) = 2*a(n-2) for n > 2; a(1) = 3, a(2) = 4.
Original entry on oeis.org
3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
- Miquel A. Fiol, J. L. A. Yebra, and I. Alegre, Line digraph iterations and the (d,k) digraph problem, IEEE Trans. Comput. C-33(5) (1984), 400-403.
- Index entries for linear recurrences with constant coefficients, signature (0,2).
Cf.
A000079 (powers of 2),
A007283 (3*2^n),
A027383,
A029744,
A048580,
A052955,
A063759,
A078057,
A090989,
A145751,
A163604,
A163605,
A163606.
-
[ n le 2 select n+2 else 2*Self(n-2): n in [1..41] ];
-
LinearRecurrence[{0,2}, {3,4}, 52] (* or *) Table[(1/2)*(5-(-1)^n )*2^((2*n-1+(-1)^n)/4), {n,50}] (* G. C. Greubel, Aug 24 2017 *)
-
my(x='x+O('x^50)); Vec(x*(3+4*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 24 2017
-
[(2+(n%2))*2^((n-(n%2))//2) for n in range(1,41)] # G. C. Greubel, Jun 13 2024
A332954
Triangle read by rows: T(n,k) is the number of permutations sigma of [n] such that sigma(j)/(j+k) > sigma(j+1)/(j+k+1) for 1 <= j <= n-1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 6, 3, 2, 1, 1, 1, 9, 5, 3, 2, 1, 1, 1, 19, 8, 5, 3, 2, 1, 1, 1, 30, 13, 7, 5, 3, 2, 1, 1, 1, 60, 21, 12, 7, 5, 3, 2, 1, 1, 1, 108, 38, 17, 11, 7, 5, 3, 2, 1, 1, 1
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 11
-----+-----------------------------------------
0 | 1;
1 | 1, 1;
2 | 1, 1, 1;
3 | 2, 1, 1, 1;
4 | 3, 2, 1, 1, 1;
5 | 6, 3, 2, 1, 1, 1;
6 | 9, 5, 3, 2, 1, 1, 1;
7 | 19, 8, 5, 3, 2, 1, 1, 1;
8 | 30, 13, 7, 5, 3, 2, 1, 1, 1;
9 | 60, 21, 12, 7, 5, 3, 2, 1, 1, 1;
10 | 108, 38, 17, 11, 7, 5, 3, 2, 1, 1, 1;
11 | 222, 64, 31, 16, 11, 7, 5, 3, 2, 1, 1, 1;
A206918
Sum of binary palindromes p < 2^n.
Original entry on oeis.org
0, 1, 4, 16, 40, 136, 328, 1096, 2632, 8776, 21064, 70216, 168520, 561736, 1348168, 4493896, 10785352, 35951176, 86282824, 287609416, 690262600, 2300875336, 5522100808, 18407002696, 44176806472, 147256021576, 353414451784, 1178048172616, 2827315614280
Offset: 0
a(0) = 0, since p=0 is the only binary palindrome p<2^0;
a(3) = 16, since p=0, 1, 3, 5, 7 are the only binary palindromes < 2^3 and 0+1+3+5+7=16.
See
A016116 for the number of binary palindromes between 2^(n-1) and 2^n.
See
A052995 for the number of binary palindromes < 2^n.
See
A206917 for the sum of binary palindromes between 2^(n-1) and 2^n.
A208245
Triangle read by rows: a(n,k) = a(n-2,k) + a(n-2,k-1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 6, 5, 3, 2, 1, 1, 1, 4, 7, 7, 5, 3, 2, 1, 1, 1, 5, 10, 11, 8, 5, 3, 2, 1, 1, 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 1, 6, 15, 21, 19, 13, 8, 5, 3, 2, 1, 1, 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1
Offset: 1
The first 13 rows are (as above) where n is the row index:
1
1, 1
1, 1, 1
1, 2, 1, 1
1, 2, 2, 1, 1
1, 3, 3, 2, 1, 1
1, 3, 4, 3, 2, 1, 1
1, 4, 6, 5, 3, 2, 1, 1
1, 4, 7, 7, 5, 3, 2, 1, 1
1, 5, 10, 11, 8, 5, 3, 2, 1, 1
1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1
1, 6, 15, 21, 19, 13, 8, 5, 3, 2, 1, 1
1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1,
-
a208245 n k = a208245_tabl !! (n-1) !! (k-1)
a208245_row n = a208245_tabl !! (n-1)
a208245_tabl = map fst $ iterate f ([1], [1, 1]) where
f (us, vs) = (vs, zipWith (+) ([0] ++ us ++ [0]) (us ++ [0, 1]))
-- Reinhard Zumkeller, Jul 28 2013
A191795
Triangle read by rows: T(n,k) is the number of length n left factors of Dyck paths having k DUU's, where U=(1,1) and D=(1,-1).
Original entry on oeis.org
1, 1, 2, 3, 5, 1, 7, 3, 11, 9, 15, 19, 1, 23, 42, 5, 31, 77, 18, 47, 150, 54, 1, 63, 255, 137, 7, 95, 464, 333, 32, 127, 753, 720, 115, 1, 191, 1314, 1558, 360, 9, 255, 2067, 3067, 996, 50, 383, 3508, 6167, 2597, 214, 1, 511, 5397, 11410, 6207, 774, 11, 767, 8982, 21820, 14485, 2494, 72
Offset: 0
T(5,1)=3 because we have U(DUU)D, U(DUU)U, and UU(DUU), where U=(1,1) and D=(1,-1) (the DUU's are shown between parentheses).
Triangle starts:
1;
1;
2;
3;
5, 1;
7, 3;
11, 9;
15, 19, 1;
23, 42, 5;
-
eq := t*z^2*C^2-(1-2*z^2+2*t*z^2)*C+1-z^2+t*z^2 = 0: C := RootOf(eq, C): G := 1-(1-C-z*C)/(1-z+t*z-t*z*C): Gser := simplify(series(G, z = 0, 23)): for n from 0 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: 1; for n to 18 do seq(coeff(P[n], t, k), k = 0 .. ceil((1/3)*n)-1) end do; # yields sequence in triangular form
A249452
Numbers k such that A249441(k) = 3.
Original entry on oeis.org
15, 31, 47, 63, 95, 127, 191, 255, 383, 511, 767, 1023, 1535, 2047, 3071, 4095, 6143, 8191, 12287, 16383, 24575, 32767, 49151, 65535, 98303, 131071, 196607, 262143, 393215, 524287, 786431, 1048575, 1572863, 2097151, 3145727, 4194303, 6291455, 8388607, 12582911
Offset: 1
- E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
- V. Shevelev, Binomial Coefficient Predictors, Journal of Integer Sequences, Vol. 14 (2011), Article 11.2.8
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
-
CoefficientList[Series[(15 + 16 x - 14 x^2 - 16 x^3)/(1 - x -2 x^2 + 2 x^3), {x, 0, 70}], x] (* Vincenzo Librandi, Oct 30 2014 *)
LinearRecurrence[{1,2,-2},{15,31,47,63},40] (* Harvey P. Dale, Apr 01 2019 *)
-
a(n)=if(n==1, 15, (n%2+2)<<(n\2+3)-1) \\ Charles R Greathouse IV, Nov 06 2014
-
is(n)=(n+1)>>valuation(n+1, 2)<5 && !setsearch([1, 2, 3, 5, 7, 11, 23], n) \\ Charles R Greathouse IV, Nov 06 2014
A364144
Number of distinct representations for n in base 2, using digits -1,0,1, whose sum of digits is 0.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 4, 2, 4, 3, 4, 1, 3, 3, 5, 2, 6, 4, 6, 2, 5, 4, 7, 3, 6, 4, 5, 1, 3, 3, 6, 3, 7, 5, 8, 2, 7, 6, 10, 4, 10, 6, 8, 2, 6, 5, 9, 4, 10, 7, 10, 3, 8, 6, 10, 4, 8, 5, 6, 1, 3, 3, 6, 3, 8, 6, 9, 3, 8, 7, 13, 5, 12, 8, 11, 2, 8, 7, 13, 6
Offset: 0
a(12) = 2, because 12 = 16-4 = 32-16-8+4.
-
a364144(upto) = {my (a=vector(upto)); for (k=1, 3^floor(3*log(upto)), my (w=digits(k,3), n); w=apply(x->x-1, w); if (w[1] && vecsum(w)==0, my (n=fromdigits(w,b=2)); if (n>0 && n<=#a, a[n]++))); concat(1,a)};
a364144(70) \\ Hugo Pfoertner, Jul 11 2023
A385396
Numbers k such that 8 does not divide binomial(k, j) for any j in 0..k.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 19, 23, 27, 31, 39, 47, 55, 63, 79, 95, 111, 127, 159, 191, 223, 255, 319, 383, 447, 511, 639, 767, 895, 1023, 1279, 1535, 1791, 2047, 2559, 3071, 3583, 4095, 5119, 6143, 7167, 8191, 10239, 12287, 14335, 16383, 20479, 24575
Offset: 1
-
isa := n -> andmap(j -> modp(binomial(n, j), 8) > 0, [seq(0..n)]): select(isa, [seq(0..200)]);
# Or, using the o.g.f.:
gf := (x + x^2 + x^3 + x^4 - x^5 - x^6 - x^7)/((-1 + x)*(-1 + 2*x^4)): ser := series(gf, x, 60): seq(coeff(ser, x, n), n = 0..53);
-
LinearRecurrence[{1, 0, 0, 2, -2}, Range[0, 7], 60] (* Paolo Xausa, Jun 30 2025 *)
-
def seq_gen():
n, c, value = 0, 1, 3
for v in [0, 1, 2]: yield v
while True:
yield value
value += c
n += 1
if n == 4:
n = 0
c += c
term = seq_gen()
print([next(term) for _ in range(54)])
A065548
a(1) = 1 and, for n > 0, a(2*n) = sum{a(i) | 0 < i <= n}, a(2*n+1) = a(n)^2.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 1, 5, 4, 6, 1, 9, 9, 10, 1, 15, 25, 19, 16, 25, 36, 26, 1, 35, 81, 44, 81, 54, 100, 55, 1, 70, 225, 95, 625, 114, 361, 130, 256, 155, 625, 191, 1296, 217, 676, 218, 1, 253, 1225, 334, 6561, 378, 1936, 459, 6561, 513, 2916, 613, 10000, 668, 3025, 669, 1
Offset: 1
A216344
Triangle T(n,k), read by rows, given by (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, -1, 1, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938 .
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 4, 3, 1, 0, 8, 8, 7, 4, 1, 0, 16, 16, 16, 11, 5, 1, 0, 32, 32, 36, 28, 16, 6, 1, 0, 64, 64, 80, 68, 45, 22, 7, 1, 0, 128, 128, 176, 160, 118, 68, 29, 8, 1, 0, 256, 256, 384
Offset: 0
Triangle begins :
1
0, 1
0, 1, 1
0, 2, 2, 1
0, 4, 4, 3, 1
0, 8, 8, 7, 4, 1
0, 16, 16, 16, 11, 5, 1
0, 32, 32, 36, 28, 16, 6, 1
Previous
Showing 51-60 of 61 results.
Next
Comments