cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A130810 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 4-subsets of X containing none of X_i, (i=1,...,n).

Original entry on oeis.org

16, 80, 240, 560, 1120, 2016, 3360, 5280, 7920, 11440, 16016, 21840, 29120, 38080, 48960, 62016, 77520, 95760, 117040, 141680, 170016, 202400, 239200, 280800, 327600, 380016, 438480, 503440, 575360, 654720, 742016, 837760, 942480, 1056720
Offset: 4

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=4) of 3 objects u,v,z, with repetition allowed, containing n-4 u's. Example: if n=4 then n-4 =(0) zero u, a(1)=16 because we have vvvv zzzz vvvz zzzv vvzv zzvz vzvv zvzz zvvv vzzz vvzz zzvv vzvz zvzv zvvz vzzv. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 3-dimensional elements in an n-cross polytope where n>=4. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Maple
    a:= n-> binomial(2*n,4) +binomial(n,2) -n*binomial(2*n-2,2);
    seq(binomial(n, n-4)*2^4, n=4..37); # Zerinvary Lajos, Dec 07 2007
  • Mathematica
    a[n_] := 16 * Binomial[n, 4]; Array[a, 34, 4] (* Amiram Eldar, Jul 25 2025 *)
  • PARI
    a(n) = 16 * binomial(n, 4); \\ Amiram Eldar, Jul 25 2025

Formula

a(n) = binomial(2*n,4) + binomial(n,2) - n*binomial(2*n-2,2).
a(n) = binomial(n,4)*16. - Zerinvary Lajos, Dec 07 2007
G.f.: 16*x^4/(1-x)^5. - Colin Barker, Apr 14 2012
a(n) = 2*n*(n-1)*(n-2)*(n-3)/3 = 2*A162668(n-3). - Robert Israel, Jul 06 2015
a(n) = 16 * A000332(n). - Alois P. Heinz, Oct 26 2020
E.g.f.: 2*exp(x)*x^4/3. - Stefano Spezia, Jul 17 2025
From Amiram Eldar, Jul 25 2025: (Start)
Sum_{n>=4} 1/a(n) = 1/12.
Sum_{n>=4} (-1)^n/a(n) = 2*log(2) - 4/3. (End)

A162007 Third left hand column of the EG1 triangle A162005.

Original entry on oeis.org

1, 270, 36096, 4766048, 704357760, 120536980224, 24060789342208, 5590122715250688, 1503080384197754880, 464520829174515630080, 163839204411117787938816, 65500849343294249018327040
Offset: 3

Views

Author

Johannes W. Meijer, Jun 27 2009

Keywords

Crossrefs

Third left hand column of the EG1 triangle A162005.
Other left hand columns are A000182 and A162006.
Related to A094665, A083061 and A156919.
A000079, A036289 and A100381 appear in the a(n, 3) formula.
A001789, A003472, A054849, A002409, A054851, A140325 and A140354 (scaled by 2^(m-1)) appear one by one in the a(n, m) formulas for m= 4 and higher .

Programs

  • Maple
    nmax := 14; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1)*(x+1)*T1(i-1, x+1) - 2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1) * A156919(n-1, m-1) end do end do: m:=3; for n from m to nmax do a(n, m) := sum((-1)^(m-p1-1)*sum(2^(n-q-1)*binomial(n-q-1, m-p1-1) * A094665(n-1, q) * A156919(q, p1), q=1..n-m+p1), p1=0..m-1) od: seq(a(n, m), n = m..nmax);
    # Maple program edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = sum((-1)^(m-p-1)*sum(2^(n-q-1)*binomial(n-q-1,m-p-1)*A094665(n-1,q)* A156919(q,p),q=1..n-m+p), p=0..m-1) with m = 3.

A140404 a(n) = binomial(n+5, 5)*7^n.

Original entry on oeis.org

1, 42, 1029, 19208, 302526, 4235364, 54353838, 652246056, 7419298887, 80787921214, 848273172747, 8636963213424, 85649885199788, 830145041167176, 7886377891088172, 73606193650156272, 676256904160810749, 6126091955339109138, 54794489156088698401, 484498640959100070072
Offset: 0

Views

Author

Zerinvary Lajos, Jun 16 2008

Keywords

Comments

With a different offset, number of n-permutations of 8 objects:r,s,t,u,v,z,x,y with repetition allowed, containing exactly five (5) u's. Example: a(1)=42 because we have
uuuuur, uuuuru, uuuruu, uuruuu, uruuuu, ruuuuu
uuuuus, uuuusu, uuusuu, uusuuu, usuuuu, suuuuu,
uuuuut, uuuutu, uuutuu, uutuuu, utuuuu, tuuuuu,
uuuuuv, uuuuvu, uuuvuu, uuvuuu, uvuuuu, vuuuuu,
uuuuuz, uuuuzu, uuuzuu, uuzuuu, uzuuuu, zuuuuu,
uuuuux, uuuuxu, uuuxuu, uuxuuu, uxuuuu, xuuuuu,
uuuuuy, uuuuyu, uuuyuu, uuyuuu, uyuuuu, yuuuuu.

Crossrefs

Programs

  • Magma
    [7^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
    
  • Maple
    seq(binomial(n+5,5)*7^n,n=0..17);
  • Mathematica
    Table[Binomial[n+5,5]7^n,{n,0,20}] (* or *) LinearRecurrence[ {42,-735,6860,-36015,100842,-117649},{1,42,1029,19208,302526,4235364},21] (* Harvey P. Dale, Sep 08 2011 *)
  • PARI
    a(n)=binomial(n+5,5)*7^n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 1/(1-7*x)^6. - Zerinvary Lajos, Aug 06 2008
a(n) = 42*a(n-1) - 735*a(n-2) + 6860*a(n-3) - 36015*a(n-4) + 100842*a(n-5) - 117649*a(n-6). - Harvey P. Dale, Sep 08 2011
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 45360*log(7/6) - 27965/4.
Sum_{n>=0} (-1)^n/a(n) = 143360*log(8/7) - 229705/12. (End)

A130812 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 6-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

64, 448, 1792, 5376, 13440, 29568, 59136, 109824, 192192, 320320, 512512, 792064, 1188096, 1736448, 2480640, 3472896, 4775232, 6460608, 8614144, 11334400, 14734720, 18944640, 24111360, 30401280, 38001600, 47121984, 57996288, 70884352, 86073856, 103882240
Offset: 6

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=6) of 3 objects u,v,z, with repetition allowed, containing n-6 u's. Example: if n=6 then n-6 =(0) zero u, a(1)=64. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 5-dimensional elements in an n-cross polytope where n>=6. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(2*n,6)+Binomial(n,2)*Binomial(2*n-4,2)- n*Binomial(2*n-2,4)-Binomial(n,3): n in [6..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,6)+binomial(n,2)*binomial(2*n-4,2)-n*binomial(2*n-2,4)-binomial(n,3);
    seq(binomial(n,n-6)*2^6,n=6..32); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+5, 6)*2^6, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    CoefficientList[Series[64/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Mar 21 2012 *)

Formula

a(n) = binomial(2*n,6) + binomial(n,2)*binomial(2*n-4,2) - n*binomial(2*n-2,4) - binomial(n,3).
a(n) = C(n,n-6)*2^6, n>=6. - Zerinvary Lajos, Dec 07 2007
G.f.: 64*x^6/(1-x)^7. - Colin Barker, Mar 20 2012

A172242 Number of 10-D hypercubes in an n-dimensional hypercube.

Original entry on oeis.org

1, 22, 264, 2288, 16016, 96096, 512512, 2489344, 11202048, 47297536, 189190144, 722362368, 2648662016, 9372188672, 32133218304, 107110727680, 348109864960, 1105760747520, 3440144547840, 10501493882880, 31504481648640
Offset: 10

Views

Author

Zerinvary Lajos, Jan 29 2010

Keywords

Comments

With a different offset, number of n-permutations (n>=8) of 3 objects: u, v, z with repetition allowed, containing exactly ten (10) u's.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 10, 10]*2^n, {n, 0, 22}]
  • Sage
    [lucas_number2(n, 2, 0)*binomial(n,10)/2^10 for n in range(10, 31)] # Zerinvary Lajos, Feb 05 2010

Formula

a(n) = A038207(n,10).
a(n) = binomial(n,10)*2^(n-10). [Corrected by R. J. Mathar, Feb 21 2010]
G.f.: -x^10/(2*x-1)^11. - Colin Barker, Nov 11 2012
a(n) = Sum_{i=10..n} binomial(i,10)*binomial(n,i). Example: for n=15, a(15) = 1*3003 + 11*1365 + 66*455 + 286*105 + 1001*15 + 3003*1 = 96096. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=10} 1/a(n) = 1879/126 - 20*log(2).
Sum_{n>=10} (-1)^n/a(n) = 393660*log(3/2) - 20111419/126. (End)

A130811 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
Offset: 5

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=5) of 3 objects u,v,z, with repetition allowed, containing n-5 u's. Example: if n=5 then n-5 =(0) zero u, a(1)=32. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 4-dimensional elements in an n-cross polytope where n>=5. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,5)+(2*n-4)*binomial(n,2)-n*binomial(2*n-2,3)
    seq(binomial(n,n-5)*2^5,n=5..34); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,5) + (2*n-4)*binomial(n,2) - n*binomial(2*n-2,3).
a(n) = C(n,n-5)*2^5, for n>=5. - Zerinvary Lajos, Dec 07 2007
G.f.: 32*x^5/(1-x)^6. - Colin Barker, Apr 14 2012

A178822 Triangle read by rows: T(n,k) = C(n+5,5) * C(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 6, 6, 21, 42, 21, 56, 168, 168, 56, 126, 504, 756, 504, 126, 252, 1260, 2520, 2520, 1260, 252, 462, 2772, 6930, 9240, 6930, 2772, 462, 792, 5544, 16632, 27720, 27720, 16632, 5544, 792, 1287, 10296, 36036, 72072, 90090, 72072, 36036, 10296, 1287
Offset: 0

Views

Author

Harlan J. Brothers, Jun 19 2010

Keywords

Comments

The product of A000389 and Pascal's triangle (A007318). Level 6 of Pascal's prism (A178819) read by rows: (i+5; 5, i-j, j), i >= 0, 0 <= j <= i.

Examples

			Triangle begins:
    1;
    6,   6;
   21,  42,  21;
   56, 168, 168,  56;
  126, 504, 756, 504, 126;
		

Crossrefs

Rows sum to A054849, shallow diagonals sum to A001874.

Programs

  • Magma
    /* As triangle */ [[Binomial(n+5,5)*Binomial(n,k): k in [0..n]]: n in [0..10]]; // Vincenzo Librandi, Oct 23 2017
    
  • Mathematica
    Table[Multinomial[5, i-j, j], {i, 0, 9}, {j, 0, i}]//Column
    Table[Binomial[n + 5, 5]*Binomial[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n+5,5)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 25 2017

Formula

T(n,k) = C(n+5,5) * C(n,k), 0 <= k <= n.
For element a_(h, i, j) in A178819: a_(6, i, j) = (i+4; 5, i-j, j-1), i >= 1, 1 <= j <= i.
G.f.: 1/(1 - x - x*y)^6. - Ilya Gutkovskiy, Mar 20 2020

A211388 Expansion of 1/((1-2*x)^6*(1-x)).

Original entry on oeis.org

1, 13, 97, 545, 2561, 10625, 40193, 141569, 471041, 1496065, 4571137, 13516801, 38862849, 109051905, 299565057, 807600129, 2141192193, 5592842241, 14413725697, 36698062849, 92408905729, 230359564289, 568965726209, 1393398120449
Offset: 0

Views

Author

R. J. Mathar, Feb 07 2013

Keywords

Crossrefs

Cf. A054849 (first differences).

Programs

  • Magma
    m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-2*x)^6*(1-x)))); // Bruno Berselli, Feb 08 2013
  • Mathematica
    CoefficientList[Series[1 / ((1 - 2 x)^6 (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 10 2013 *)
    LinearRecurrence[{13,-72,220,-400,432,-256,64},{1,13,97,545,2561,10625,40193},30] (* Harvey P. Dale, Sep 01 2023 *)

Formula

a(n) = 1 + 2^(n-2)*n*(n^4 + 10*n^3 + 55*n^2 + 110*n + 184)/15. - Bruno Berselli, Feb 08 2013
A211386(n) = a(n) - 2*a(n-1). - R. J. Mathar, Feb 08 2013

A213347 5-quantum transitions in systems of N>=5 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 12, 84, 7, 448, 112, 2016, 1008, 36, 8064, 6720, 720, 29568, 36960, 7920, 165, 101376, 177408, 63360, 3960, 329472, 768768, 411840, 51480, 715, 1025024, 3075072, 2306304, 480480, 20020, 3075072, 11531520, 11531520
Offset: 5

Views

Author

Stanislav Sykora, Jun 13 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for quintuple-quantum transitions (q = 5).
It lists the flattened triangle T(5;N,k) with rows N = 5,6,... and columns N, k = 0..floor((N-5)/2).

Examples

			Starting rows of the triangle:
  N | k = 0, 1, ..., floor((N-5)/2)
  5 |    1
  6 |   12
  7 |   84    7
  8 |  448  112
  9 | 2016 1008 36
		

References

Crossrefs

Cf. A051288 (q=0), A213343 to A213346 (q=1 to 4), A213348 to A213352 (q=6 to 10).
A054849 (first column), A004311 (row sums).

Programs

  • Mathematica
    With[{q = 5}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 15}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    See A213343; set thisq = 5

Formula

Set q = 5 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).

A130813 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=7) of 3 objects u,v,z, with repetition allowed, containing n-7 u's. Example: if n=7 then n-7 =(0) zero u, a(1)=128. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 6-dimensional elements in an n-cross polytope where n>=7. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3);
    seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,7) + binomial(n,2)*binomial(2*n-4,3) - n*binomial(2*n-2,5) - (2*n-6)*binomial(n,3).
a(n) = C(n,n-7)*2^7, n>=7. - Zerinvary Lajos, Dec 07 2007
G.f.: 128*x^7/(1-x)^8. - Colin Barker, Mar 18 2012
a(n) = 128*A000580(n). a(n+1) = 2*(n+1)*a(n)/(n-6) for n >= 7. - Robert Israel, Jul 08 2015
Previous Showing 11-20 of 20 results.