cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A244806 The 180-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 18, 59, 124, 213, 326, 463, 624, 809, 1018, 1251, 1508, 1789, 2094, 2423, 2776, 3153, 3554, 3979, 4428, 4901, 5398, 5919, 6464, 7033, 7626, 8243, 8884, 9549, 10238, 10951, 11688, 12449, 13234, 14043, 14876, 15733, 16614, 17519, 18448, 19401, 20378, 21379, 22404, 23453, 24526, 25623
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Programs

  • Magma
    [12*n^2 - 19*n + 8 : n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244806:=n->12*n^2 - 19*n + 8: seq(A244806(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 19n + 8; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 19*n + 8) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 15*x + 8*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

a(n) = 12*n^2 - 19*n + 8.
See A056105 example section for its formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 15*x + 8*x^2) / (1 - x)^3.
(End)

A244802 The 60-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 10, 43, 100, 181, 286, 415, 568, 745, 946, 1171, 1420, 1693, 1990, 2311, 2656, 3025, 3418, 3835, 4276, 4741, 5230, 5743, 6280, 6841, 7426, 8035, 8668, 9325, 10006, 10711, 11440, 12193, 12970, 13771, 14596, 15445, 16318, 17215, 18136, 19081, 20050, 21043, 22060, 23101, 24166, 25255
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for a diagram.
		

Crossrefs

Programs

  • Magma
    [12*n^2-27*n+16 : n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244802:=n->12*n^2-27*n+16: seq(A244802(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 27n + 16; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 27*n + 16) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 7*x + 16*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

See A056105 example section for a formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 7*x + 16*x^2) / (1 - x)^3.
(End)

A244803 The 360 degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 12, 47, 106, 189, 296, 427, 582, 761, 964, 1191, 1442, 1717, 2016, 2339, 2686, 3057, 3452, 3871, 4314, 4781, 5272, 5787, 6326, 6889, 7476, 8087, 8722, 9381, 10064, 10771, 11502, 12257, 13036, 13839, 14666, 15517, 16392, 17291, 18214, 19161, 20132, 21127, 22146, 23189, 24256, 25347
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for a diagram.
		

Crossrefs

Programs

  • Magma
    [12*n^2-25*n+14 : n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244803:=n->12*n^2-25*n+14: seq(A244803(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 25n + 14; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 25*n + 14) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 2*x)*((1 + 7*x) / (1 - x)^3) + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

See A056105 example section for a formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 2*x)*((1 + 7*x) / (1 - x)^3).
(End)

A244804 The 300-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 14, 51, 112, 197, 306, 439, 596, 777, 982, 1211, 1464, 1741, 2042, 2367, 2716, 3089, 3486, 3907, 4352, 4821, 5314, 5831, 6372, 6937, 7526, 8139, 8776, 9437, 10122, 10831, 11564, 12321, 13102, 13907, 14736, 15589, 16466, 17367, 18292, 19241, 20214, 21211, 22232, 23277, 24346, 25439
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Programs

  • Magma
    [ 12*n^2 - 23*n + 12 : n in [1..50] ]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244804:=n->12*n^2 - 23*n + 12: seq(A244804(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 23n + 12; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 23*n + 12) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 11*x + 12*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

See A056105 example section for its formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 11*x + 12*x^2) / (1 - x)^3.
(End)

A084684 Degrees of certain maps (see Comments and Formulas for more precise definitions).

Original entry on oeis.org

1, 2, 4, 8, 13, 20, 28, 38, 49, 62, 76, 92, 109, 128, 148, 170, 193, 218, 244, 272, 301, 332, 364, 398, 433, 470, 508, 548, 589, 632, 676, 722, 769, 818, 868, 920, 973, 1028, 1084, 1142, 1201, 1262, 1324, 1388, 1453, 1520, 1588, 1658, 1729, 1802, 1876, 1952, 2029, 2108, 2188, 2270, 2353, 2438, 2524, 2612, 2701, 2792, 2884, 2978, 3073, 3170, 3268, 3368, 3469, 3572
Offset: 0

Views

Author

N. J. A. Sloane, Jul 16 2003

Keywords

Comments

Number of binary strings of length n with no substrings equal to 0001, 1001, or 1011. - R. H. Hardin, Aug 14 2009
Degree sequence d(n) of recursion x(n+1)+x(n)+x(n-1) = b + c(n)/x(n) where c(n) = c(n-1) + c(n-2) - c(n-3) and x(n) = u(n)/f(n) and x(n-1) = v(n)/f(n) in homogeneous coordinates (projectivization). Denoted by sigma_1 on page 32 of Hiertarinta and Viallet (2000). - Michael Somos, Jan 04 2022

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 13*x^4 + 20*x^5 + 28*x^6 + 38*x^7 + ...
		

Crossrefs

Cf. A064863, A056107 (bisection), A077588 (bisection).
Cf. also A001651, A002620, A122958.

Programs

Formula

a(n) = (6*n^2 + 9 - (-1)^n)/8. - Charles R Greathouse IV, Sep 10 2014
G.f.: ( 1+2*x^3 ) / ( (1+x)*(1-x)^3 ). - R. J. Mathar, Sep 11 2014
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - Colin Barker, Sep 11 2014
a(n) = a(-n) for all n in Z. - Michael Somos, Feb 08 2015
a(n) - a(n-1) = A001651(n), a(n+1) - a(n-1) = 3*n for all n in Z. - Michael Somos, Feb 08 2015
(a(n) - a(n+1))^2 - (2*a(n) + a(n+1)) + 4 = 3*n/2 + 1 for all even n in Z. - Michael Somos, Feb 08 2015
0 = -4 + a(n)*(-a(n+1) + a(n+2)) + a(n+1)*(+3 + a(n+1) - a(n+2)) for all n in Z. - Michael Somos, Feb 08 2015
A122958(n-1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n for all n>1. - Michael Somos, Feb 08 2015
a(n) = 2*a(n-1) - 3*A002620(n-2) for all n in Z. - Michael Somos, Dec 27 2021
a(n) = 3*(a(n-1) + a(n-4)) - 2*(a(n-2) + a(n-3)) - a(n-5) for all n in Z. - Michael Somos, Jan 04 2022

Extensions

More terms from Charles R Greathouse IV, Sep 10 2014
Edited by N. J. A. Sloane, Jan 04 2022

A162590 Polynomials with e.g.f. exp(x*t)/csch(t), triangle of coefficients read by rows.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 1, 0, 3, 0, 0, 4, 0, 4, 0, 1, 0, 10, 0, 5, 0, 0, 6, 0, 20, 0, 6, 0, 1, 0, 21, 0, 35, 0, 7, 0, 0, 8, 0, 56, 0, 56, 0, 8, 0, 1, 0, 36, 0, 126, 0, 84, 0, 9, 0, 0, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 1, 0, 55, 0, 330, 0, 462, 0, 165, 0, 11, 0, 0, 12, 0, 220, 0, 792, 0, 792, 0
Offset: 0

Views

Author

Peter Luschny, Jul 07 2009

Keywords

Comments

Comment from Peter Bala (Dec 06 2011): "Let P denote Pascal's triangle A070318 and put M = 1/2*(P-P^-1). M is A162590 (see also A131047). Then the first column of (I-t*M)^-1 (apart from the initial 1) lists the row polynomials for" A196776(n,k), which gives the number of ordered partitions of an n set into k odd-sized blocks. - Peter Luschny, Dec 06 2011
The n-th row of the triangle is formed by multiplying by 2^(n-1) the elements of the first row of the limit as k approaches infinity of the stochastic matrix P^(2k-1) where P is the stochastic matrix associated with the Ehrenfest model with n balls. The elements of a stochastic matrix P give the probability of arriving in a state j given the previous state i. In particular the sum of every row of the matrix must be 1, and so the sum of the terms in the n-th row of this triangle is 2^(n-1). Furthermore, by the properties of Markov chains, we can interpret P^(2k) as the (2k)-step transition matrix of the Ehrenfest model and its limit exists and it is again a stochastic matrix. The rows of the triangle divided by 2^(n-1) are the even rows (second, fourth, ...) and the odd rows (first, third, ...) of the limit matrix P^(2k). - Luca Onnis, Oct 29 2023

Examples

			Triangle begins:
  0
  1,  0
  0,  2,  0
  1,  0,  3,  0
  0,  4,  0,  4,  0
  1,  0, 10,  0,  5,  0
  0,  6,  0, 20,  0,  6,  0
  1,  0, 21,  0, 35,  0,  7,  0
  ...
  p[0](x) = 0;
  p[1](x) = 1
  p[2](x) = 2*x
  p[3](x) = 3*x^2 +  1
  p[4](x) = 4*x^3 +  4*x
  p[5](x) = 5*x^4 + 10*x^2 +  1
  p[6](x) = 6*x^5 + 20*x^3 +  6*x
  p[7](x) = 7*x^6 + 35*x^4 + 21*x^2 + 1
  p[8](x) = 8*x^7 + 56*x^5 + 56*x^3 + 8*x
.
Cf. the triangle of odd-numbered terms in rows of Pascal's triangle (A034867).
p[n] (k), n=0,1,...
k=0:  0, 1,  0,   1,    0,     1, ... A000035, (A059841)
k=1:  0, 1,  2,   4,    8,    16, ... A131577, (A000079)
k=2:  0, 1,  4,  13,   40,   121, ... A003462
k=3:  0, 1,  6,  28,  120,   496, ... A006516
k=4:  0, 1,  8,  49,  272,  1441, ... A005059
k=5:  0, 1, 10,  76,  520,  3376, ... A081199, (A016149)
k=6:  0, 1, 12, 109,  888,  6841, ... A081200, (A016161)
k=7:  0, 1, 14, 148, 1400, 12496, ... A081201, (A016170)
k=8:  0, 1, 16, 193, 2080, 21121, ... A081202, (A016178)
k=9:  0, 1, 18, 244, 2952, 33616, ... A081203, (A016186)
k=10: 0, 1, 20, 301, 4040, 51001, ... ......., (A016190)
.
p[n] (k), k=0,1,...
p[0]: 0,  0,   0,    0,    0,     0, ... A000004
p[1]: 1,  1,   1,    1,    1,     1, ... A000012
p[2]: 0,  2,   4,    6,    8,    10, ... A005843
p[3]: 1,  4,  13,   28,   49,    76, ... A056107
p[4]: 0,  8,  40,  120,  272,   520, ... A105374
p[5]: 1, 16, 121,  496, 1441,  3376, ...
p[6]: 0, 32, 364, 2016, 7448, 21280, ...
		

Crossrefs

Cf. A119467.

Programs

  • Maple
    # Polynomials: p_n(x)
    p := proc(n,x) local k;
    pow := (n,k) -> `if`(n=0 and k=0,1,n^k);
    add((k mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end;
    # Coefficients: a(n)
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)/csch(t), t,16),t,i),x,n), n=0..i)), i=0..8);
  • Mathematica
    p[n_, x_] := Sum[Binomial[n, 2*k-1]*x^(n-2*k+1), {k, 0, n+2}]; row[n_] := CoefficientList[p[n, x], x] // Append[#, 0]&; Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
    n = 15; "n-th row"
    mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}];
    mat[[1, 2]] = 1;
    mat[[n + 1, n]] = 1;
    For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ];
    For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n];
    mat // MatrixForm;
    P2 = Dot[mat, mat];
    R1 = Simplify[
      Eigenvectors[Transpose[P2]][[1]]/
       Total[Eigenvectors[Transpose[P2]][[1]]]]
    R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}]
    even = R1*2^(n - 1) (* Luca Onnis, Oct 29 2023 *)

Formula

p_n(x) = Sum_{k=0..n} (k mod 2)*binomial(n,k)*x^(n-k).
E.g.f.: exp(x*t)/csch(t) = 0*(t^0/0!) + 1*(t^1/1!) + (2*x)*(t^2/2!) + (3*x^2+1)*(t^3/3!) + ...
The 'co'-polynomials with generating function exp(x*t)*sech(t) are the Swiss-Knife polynomials (A153641).

A212656 a(n) = 5*n^2 + 1.

Original entry on oeis.org

1, 6, 21, 46, 81, 126, 181, 246, 321, 406, 501, 606, 721, 846, 981, 1126, 1281, 1446, 1621, 1806, 2001, 2206, 2421, 2646, 2881, 3126, 3381, 3646, 3921, 4206, 4501, 4806, 5121, 5446, 5781, 6126, 6481, 6846, 7221, 7606, 8001, 8406, 8821, 9246, 9681, 10126, 10581, 11046, 11521, 12006, 12501
Offset: 0

Views

Author

Alonso del Arte, May 23 2012

Keywords

Comments

Z[sqrt(-5)] is not a unique factorization domain, and some of the numbers in this sequence have two different factorizations in that domain, e.g., 21 = 3 * 7 = (1 + 2*sqrt(-5))*(1 - 2*sqrt(-5)). And of course some primes in Z are composite in Z[sqrt(-5)], like 181 = (1 + 6*sqrt(-5))*(1 - 6*sqrt(-5)).
These are pentagonal-star numbers. - Mario Cortés, Oct 26 2020

References

  • Benjamin Fine & Gerhard Rosenberger, Number Theory: An Introduction via the Distribution of Primes, Boston: Birkhäuser, 2007, page 268.

Crossrefs

Cf. A137530 (primes of the form 1+5*n^2).

Programs

Formula

a(n) = 5*n^2 + 1 = (1 + n*sqrt(-5))*(1 - n*sqrt(-5)).
G.f.: (1+3*x+6*x^2)/(1-x)^3. - Bruno Berselli, May 23 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 10 2012
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(5))*coth(Pi/sqrt(5)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(5))*csch(Pi/sqrt(5)))/2. (End)
a(n) = A005891(n-1) + 5*A000217(n). - Mario Cortés, Oct 26 2020
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(5))*sinh(sqrt(2/5)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(5))*csch(Pi/sqrt(5)).(End)
E.g.f.: exp(x)*(1 + 5*x + 5*x^2). - Stefano Spezia, Feb 05 2021

A271713 Numbers n such that 3*n - 5 is a square.

Original entry on oeis.org

2, 3, 7, 10, 18, 23, 35, 42, 58, 67, 87, 98, 122, 135, 163, 178, 210, 227, 263, 282, 322, 343, 387, 410, 458, 483, 535, 562, 618, 647, 707, 738, 802, 835, 903, 938, 1010, 1047, 1123, 1162, 1242, 1283, 1367, 1410, 1498, 1543, 1635, 1682, 1778, 1827, 1927, 1978, 2082, 2135, 2243, 2298
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 12 2016

Keywords

Comments

Quasipolynomial of order 2 and degree 2. - Charles R Greathouse IV, Apr 12 2016
From Ray Chandler, Apr 13 2016: (Start)
Square roots of resulting squares gives A001651.
Sequence is the union of A141631 and A271740. (End)

Examples

			a(3) = 7 because 3*7 - 5 = 16 = 4^2.
		

Crossrefs

Cf. numbers n such that 3*n + k is a square: A120328 (k=-6), this sequence (k=-5), A056107 (k=-3), A257083 (k=-2), A033428 (k=0), A001082 (k=1), A080663 (k=3), A271675 (k=4), A100536 (k=6).

Programs

Formula

G.f.: x*(2 + x + x^3 + 2*x^4)/((1 - x)^3*(1 + x)^2). - Ilya Gutkovskiy, Apr 12 2016
a(n) = (3/2)*n^2 + O(n). - Charles R Greathouse IV, Apr 12 2016
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5. - Wesley Ivan Hurt, Apr 13 2016

A238410 a(n) = floor((3(n-1)^2 + 1)/2).

Original entry on oeis.org

0, 2, 6, 14, 24, 38, 54, 74, 96, 122, 150, 182, 216, 254, 294, 338, 384, 434, 486, 542, 600, 662, 726, 794, 864, 938, 1014, 1094, 1176, 1262, 1350, 1442, 1536, 1634, 1734, 1838, 1944, 2054, 2166, 2282, 2400, 2522, 2646, 2774, 2904, 3038, 3174, 3314, 3456, 3602, 3750, 3902, 4056, 4214, 4374, 4538, 4704
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2014

Keywords

Comments

a(n) = the eccentric connectivity index of the path P[n] on n vertices. The eccentric connectivity index of a simple connected graph G is defined to be the sum over all vertices i of G of the product E(i)D(i), where E(i) is the eccentricity and D(i) is the degree of vertex i. For example, a(4)=14 because the vertices of P[4] have degrees 1,2,2,1 and eccentricities 3,2,2,3; we have 1*3 + 2*2 + 2*2 + 1*3 = 14.
From Paul Curtz, Feb 23 2023: (Start)
East spoke of the hexagonal spiral using A004526 with a single 0:
.
43 42 42 41 41 40
43 28 28 27 27 26 40
44 29 17 16 16 15 26 39
44 29 17 8 8 7 15 25 39
45 30 18 9 3 2 7 14 25 38
45 30 18 9 3 0---2---6--14--24--38-->
31 19 10 4 1 1 6 13 24 37
31 19 10 4 5 5 13 23 37
32 20 11 11 12 12 23 36
32 20 21 21 22 22 36
33 33 34 34 35 35
.

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: floor((3/2)*(n-1)^2+1/2) end proc: seq(a(n), n = 1 .. 70);
  • Mathematica
    Table[Floor[(3(n-1)^2+1)/2],{n,80}]  (* or *) LinearRecurrence[{2,0,-2,1},{0,2,6,14},80] (* Harvey P. Dale, Apr 30 2022 *)
  • PARI
    a(n)=(3*(n-1)^2 + 1)\2 \\ Charles R Greathouse IV, Feb 15 2017

Formula

a(n) = (3*n)^2/6 for n even and a(n) = ((3*n)^2 + 3)/6 for n odd. - Miquel Cerda, Jun 17 2016
From Ilya Gutkovskiy, Jun 17 2016: (Start)
G.f.: 2*x^2*(1 + x + x^2)/((1 - x)^3*(1 + x)).
a(n) = (6*n^2 - 12*n + 7 + (-1)^n)/4.
a(n) = 2* A077043(n-1). (End)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Matthew House, Feb 15 2017
Sum_{n>=2} 1/a(n) = Pi^2/36 + tanh(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Mar 12 2023

A069475 First differences of A069474, successive differences of (n+1)^6-n^6.

Original entry on oeis.org

1560, 3360, 5880, 9120, 13080, 17760, 23160, 29280, 36120, 43680, 51960, 60960, 70680, 81120, 92280, 104160, 116760, 130080, 144120, 158880, 174360, 190560, 207480, 225120, 243480, 262560, 282360, 302880, 324120, 346080, 368760, 392160, 416280
Offset: 0

Views

Author

Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Mar 26 2002

Keywords

Crossrefs

Programs

Formula

a(n) = 360*n^2 + 1440*n + 1560 = 120*A056107(n+2).
G.f.: 120*(13 - 11*x + 4*x^2)/(1 - x)^3. - Bruno Berselli, Feb 25 2015

Extensions

Offset changed from 1 to 0 and added a(0)=1560 by Bruno Berselli, Feb 25 2015
Previous Showing 21-30 of 45 results. Next