cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A243449 Primes of the form n^2 + 14.

Original entry on oeis.org

23, 239, 743, 1103, 2039, 5639, 7583, 8663, 27239, 33503, 38039, 42863, 59063, 81239, 88223, 91823, 119039, 131783, 140639, 164039, 189239, 205223, 245039, 263183, 288383, 328343, 342239, 378239, 393143, 400703, 431663, 439583, 514103, 660983, 710663, 950639
Offset: 1

Views

Author

Vincenzo Librandi, Jun 05 2014

Keywords

Crossrefs

Cf. A121250 (associated n).
Cf. primes of the form n^2+k: A144255 (k=1), A056899 (k=2), A049423 (k=3), A005473 (k=4), A056905 (k=5), A056909 (k=6), A079138 (k=7), A138338 (k=8), A138353 (k=9), A138355 (k=10), A138362 (k=11), A138368 (k=12), A138375 (k=13), this sequence (k=14), A243450 (k=15), A243451 (k=16), A228244 (k=17), A174812 (k=42).

Programs

  • Magma
    [a: n in [0..1000] | IsPrime(a) where a is n^2+14];
  • Mathematica
    Select[Table[n^2 + 14, {n, 0, 2000}], PrimeQ]
    Select[Range[1,1001,2]^2+14,PrimeQ] (* Harvey P. Dale, May 30 2023 *)

A302434 Number of primes of the form b^2 + 2 for b <= 10^n.

Original entry on oeis.org

4, 12, 69, 447, 3423, 27869, 236985, 2054022, 18127693, 162237123
Offset: 1

Views

Author

Seiichi Manyama, Apr 07 2018

Keywords

Comments

From Jacques Tramu, Sep 13 2018: (Start)
Table C(i) = a(i)/(n*log(n)), with n = 10^i:
a(1) = 4 C(1) = 0.92103404
a(2) = 12 C(2) = 0.55262042
a(3) = 69 C(3) = 0.47663511
a(4) = 447 C(4) = 0.41170221
a(5) = 3423 C(5) = 0.39408744
a(6) = 27869 C(6) = 0.38502446
a(7) = 236985 C(7) = 0.38197469
a(8) = 2054022 C(8) = 0.37836484
a(9) = 18127693 C(9) = 0.37566500
a(10) = 162237123 C(10) = 0.37356478
(End)

Examples

			a(1) = 4 because there are 4 primes of the form b^2+2 for b <= 10: 2, 3, 11 and 83.
		

Crossrefs

Number of primes of the form b^2+m for b <= 10^n: A302443 (m=-3), A302442 (m=-2), A206709 (m=1), this sequence (m=2), A302435 (m=3).
Cf. A056899.

Programs

  • PARI
    {a(n) = sum(k=0, 10^n, isprime(k^2+2))}

Extensions

a(10) from Jacques Tramu, Sep 13 2018

A386245 Composite numbers k such that A075255(k) is a square.

Original entry on oeis.org

4, 6, 22, 135, 166, 444, 454, 636, 650, 854, 886, 1086, 1122, 1196, 1431, 1928, 2182, 2244, 2316, 2702, 3046, 3464, 3510, 3770, 4004, 4054, 4125, 4476, 4671, 5052, 5106, 5394, 5450, 6435, 6502, 6750, 8076, 8264, 8500, 9170, 9471, 9726, 10035, 10386, 10648, 10659, 11228, 11495, 11515, 11935, 12732
Offset: 1

Views

Author

Will Gosnell and Robert Israel, Jul 16 2025

Keywords

Comments

Composite numbers k such that k - sopfr(k) is a square, where sopfr(k) is the sum of prime factors of k with multiplicity.
Includes 2*p for p in A056899, but no odd semiprimes.
Is this sequence disjoint from A386246?

Examples

			a(3) = 22 is a term because 22 = 2 * 11 is composite and 22 - (2 + 11) = 9 is a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
     if isprime(n) then return false fi;
     issqr(n - add(t[1]*t[2],t=ifactors(n)[2]))
    end proc:
    select(filter, [$4..20000]);

A059844 a(n) = smallest nonzero square x^2 such that n+x^2 is prime.

Original entry on oeis.org

1, 1, 4, 1, 36, 1, 4, 9, 4, 1, 36, 1, 4, 9, 4, 1, 36, 1, 4, 9, 16, 1, 36, 49, 4, 81, 4, 1, 144, 1, 16, 9, 4, 9, 36, 1, 4, 9, 4, 1, 576, 1, 4, 9, 16, 1, 36, 25, 4, 9, 16, 1, 36, 25, 4, 81, 4, 1, 324, 1, 36, 9, 4, 9, 36, 1, 4, 81, 4, 1, 36, 1, 16, 9, 4, 25, 36, 1, 4, 9, 16, 1, 144, 25, 4, 81
Offset: 1

Views

Author

Labos Elemer, Feb 26 2001

Keywords

Comments

a(n) = 1 for n in A006093. - Robert Israel, Dec 31 2023

Examples

			a(24) = 49 because 49 + 24 = 73 is prime and 1 + 24 = 25, 4 + 24 = 28, 9 + 24 = 33, 16 + 24 = 40, 25 + 24 = 49, and 36 + 24 = 60 are composite.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local x;
     for x from 1 + (n mod 2) by 2  do
      if isprime(n+x^2) then return x^2 fi;
     od
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Dec 31 2023
  • Mathematica
    sqs[n_]:=Module[{q=1},While[!PrimeQ[n+q],q=(Sqrt[q]+1)^2];q]; Array[ sqs,90] (* Harvey P. Dale, Aug 11 2017 *)

Formula

a(n) + n is the smallest prime of the form x^2 + n.

A129412 Numbers k such that mean of 7 consecutive squares starting with k^2 is prime.

Original entry on oeis.org

0, 2, 4, 10, 12, 14, 24, 30, 32, 34, 42, 44, 54, 62, 64, 70, 82, 84, 92, 94, 100, 112, 114, 122, 132, 134, 144, 152, 160, 164, 174, 180, 190, 200, 204, 212, 214, 230, 232, 240, 242, 250, 252, 262, 264, 272, 274, 284, 290, 300, 304, 310, 314, 344, 354, 370, 372
Offset: 1

Views

Author

Zak Seidov, Apr 14 2007

Keywords

Comments

Sum of 7 consecutive squares starting with k^2 is equal to 7*(13 + 6*k + k^2) and mean is (13 + 6*k + k^2) = (k+3)^2+4. Hence a(n) = A007591(n+1)-3.

Examples

			(0^2+...+6^2)/7=13 prime, (2^2+...+8^2)/7=29 prime, (4^2+...+10^2)/7=53 prime.
		

Crossrefs

Programs

A164520 Primes p such that p-2 is the product of exactly 2 distinct cubes of primes.

Original entry on oeis.org

274627, 328511, 1860869, 2146691, 2924209, 9129331, 9938377, 10503461, 15438251, 24642173, 26730901, 28372627, 39651823, 61629877, 105823819, 125751503, 136590877, 151419439, 194104541, 426957779, 573856193
Offset: 1

Views

Author

Keywords

Examples

			274627 - 2 = 5^3*13^3, 328511 - 2 = 3^3*23^3,..
		

Crossrefs

Programs

  • Mathematica
    f3[n_]:=FactorInteger[n][[1,2]]==3&&Length[FactorInteger[n]]==2&&FactorInteger[n][[2,2]]==3; lst={};Do[p=Prime[n];If[f3[p-2],AppendTo[lst,p]],{n,4,4*9!}];lst
  • PARI
    forprime(p=3,1e9,if(ispower(p-2,3,&n)&&!issquare(n)&&bigomega(n)==2,print1(p",")))

Extensions

Program by Charles R Greathouse IV, Oct 12 2009

A232011 Numbers n such that (3n)^2 + 2 is prime.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 19, 27, 33, 35, 37, 39, 41, 49, 57, 73, 75, 79, 81, 83, 85, 91, 99, 101, 103, 107, 115, 117, 121, 123, 125, 129, 139, 141, 143, 147, 149, 151, 159, 167, 171, 183, 185, 187, 191, 201, 203, 217, 225, 227, 233, 237, 251, 259, 269, 273, 279
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2013

Keywords

Comments

Corresponding values of such primes are in A056899(n) for n>2.
Supersequence of A126960 (primes p such that (3p)^2 + 2 is prime).

Examples

			7 is in sequence because (3*7)^2 + 2 = 443 (prime).
		

Crossrefs

Programs

Formula

a(n) = sqrt(A056899(n+2) - 2)/3 = A067201(n+2)/3.

A260930 Differences between the numbers n such that n^2 + 2 is prime.

Original entry on oeis.org

1, 2, 6, 6, 6, 12, 6, 6, 12, 24, 18, 6, 6, 6, 6, 24, 24, 48, 6, 12, 6, 6, 6, 18, 24, 6, 6, 12, 24, 6, 12, 6, 6, 12, 30, 6, 6, 12, 6, 6, 24, 24, 12, 36, 6, 6, 12, 30, 6, 42, 24, 6, 18, 12, 42, 24, 30, 12, 18, 30, 18, 12, 6, 6, 24, 24, 12, 12, 30, 24, 36, 42, 18
Offset: 1

Views

Author

Michel Lagneau, Aug 04 2015

Keywords

Comments

Sequence A067201 has the values of n. This sequence is the first differences of A067201.
a(n) is divisible by 6 for n>2.

Examples

			a(6)=12 because A067201(7) - A067201(6) = 33 - 21 = 12.
		

Crossrefs

Cf. A056899 (primes of the form n^2+2), A067201 (values of n).

Programs

  • Maple
    i0:=0:
    for k from 1 to 1500 do:
       p:=k^2+2:
       if isprime(p) then printf(`%d, `,k-i0):i0:=k:
       else
       fi:
    od:
  • Mathematica
    Differences[Select[Range[1500], PrimeQ[2 + #^2] &, 100]]
  • PARI
    first(m)=my(u=vector(m+1),v=vector(m),r=0);for(i=1,m+1,while(!isprime(r^2 + 2),r++);u[i]=r;r++);for(i=1,m,v[i]=u[i+1]-u[i]);v; \\ Anders Hellström, Aug 14 2015

A164521 Primes of the form A162142(k) - 2.

Original entry on oeis.org

3373, 753569, 2146687, 3048623, 6539201, 8120599, 10218311, 17373977, 18609623, 19034161, 32461757, 44738873, 59776469, 69426529, 72511711, 77854481, 88121123, 116930167, 133432829, 299418307, 338608871, 413493623, 458314009, 679151437
Offset: 1

Views

Author

Keywords

Comments

Primes p such that p+2 is the cube of a squarefree semiprime, i.e., such that p+2 = q^3*r^3 where q and r are two distinct primes.

Examples

			3373 + 2 = 3375 = 3^3*5^3. 753569 + 1 = 753571 = 7^3*13^3.
		

Crossrefs

Programs

  • Maple
    N:= 10^10: # to get all terms <= N
    P:= select(isprime, [seq(i,i=3..floor((N+2)^(1/3)/3))]):
    R:= NULL:
    for i from 1 to nops(P) do
        for j from 1 to i-1 do
          p:= (P[i]*P[j])^3-2;
          if p > N then break fi;
          if isprime(p) then R:= R, p fi
    od od:
    sort([R]); # Robert Israel, Jun 05 2018
  • Mathematica
    f3[n_]:=FactorInteger[n][[1,2]]==3&&Length[FactorInteger[n]]==2&&FactorInteger[n][[2, 2]]==3; lst={};Do[p=Prime[n];If[f3[p+2],AppendTo[lst,p]],{n,4,4*9!}];  lst
    csfsQ[n_]:=Module[{c=Surd[n+2,3]},SquareFreeQ[c]&&PrimeOmega[c]==2]; Select[Prime[Range[353*10^5]],csfsQ] (* Harvey P. Dale, Jan 07 2018 *)

Extensions

Edited and examples corrected by R. J. Mathar, Aug 21 2009

A199854 Primes of the form 1 + m^2 + n^2 with gcd(m,n)=1.

Original entry on oeis.org

3, 11, 59, 83, 107, 131, 179, 227, 251, 347, 443, 467, 563, 587, 971, 1019, 1091, 1187, 1259, 1283, 1307, 1451, 1523, 1571, 1619, 1811, 1907, 1931, 2027, 2099, 2411, 2459, 2579, 2819, 2939, 2963, 3203, 3251, 3299, 3371, 3467, 3491, 3539, 3779, 3803, 3923, 3947
Offset: 1

Views

Author

Michel Marcus, Dec 22 2012

Keywords

Examples

			First such decompositions are 3 = 1 + 1^2 + 1^2, 11 = 1 + 1^2 + 3^2, 59 = 1 + 3^2 + 7^2.
First instance of several decompositions for the same prime: 131 = 1 + 3^2 + 11^2 = 1 + 7^2 + 9^2.
		

Crossrefs

Cf. A056899 (when the decomposition has m=1).

Programs

  • Maple
    filter:= proc(n) local S,x,y;
     if not isprime(n) then return false fi;
     S:= map(t -> subs(t,[x,y]),[isolve](x^2 + y^2 = n-1));
     ormap(t -> t[1] > 0 and t[2] >= t[1] and igcd(t[1],t[2])=1, S)
    end proc:
    select(filter, [seq(i,i=3..5000,2)]); # Robert Israel, Sep 30 2024
  • PARI
    hasform(p) = {q = p - 1; for (k = 1, q/2, if (issquare(k) && issquare(q-k) && (gcd(k, q-k)==1), return(1));); return(0);}
Previous Showing 31-40 of 49 results. Next