cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 65 results. Next

A061258 a(n) = Sum_{d|n} d*psi(d), where psi(d) is reduced totient function, cf. A002322.

Original entry on oeis.org

1, 3, 7, 11, 21, 21, 43, 27, 61, 63, 111, 53, 157, 129, 87, 91, 273, 183, 343, 151, 175, 333, 507, 117, 521, 471, 547, 305, 813, 261, 931, 347, 447, 819, 483, 431, 1333, 1029, 631, 327, 1641, 525, 1807, 781, 681, 1521, 2163, 373, 2101, 1563, 1095, 1103, 2757
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Crossrefs

Programs

  • Haskell
    a061258 n = sum $ zipWith (*) ds $ map a002322 ds
                where ds = a027750_row n
    -- Reinhard Zumkeller, Sep 02 2014
    
  • Mathematica
    a[n_] := DivisorSum[n, # * CarmichaelLambda[#] &]; Array[a, 100] (* Amiram Eldar, Apr 13 2024 *)
  • PARI
    a(n) = sumdiv(n, d, d * lcm(znstar(d)[2])); \\ Amiram Eldar, Apr 13 2024

Formula

a(n) = Sum_{k = 1..A000005(n)} (A027750(n,k)*A002322(A027750(n,k))). - Reinhard Zumkeller, Sep 02 2014

A332619 a(n) = Sum_{d|n} lcm(d, n/d) / d.

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 11, 18, 12, 24, 14, 24, 24, 23, 18, 33, 20, 36, 32, 36, 24, 48, 27, 42, 32, 48, 30, 72, 32, 45, 48, 54, 48, 66, 38, 60, 56, 72, 42, 96, 44, 72, 66, 72, 48, 92, 51, 81, 72, 84, 54, 96, 72, 96, 80, 90, 60, 144, 62, 96, 88, 88, 84, 144, 68, 108, 96, 144
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 17 2020

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(d/igcd(d, n/d), d=numtheory[divisors](n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 17 2020
  • Mathematica
    Table[Sum[LCM[d, n/d]/d, {d, Divisors[n]}], {n, 1, 70}]
    f[p_, e_] := If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1) + e/2, (p^(e + 2) - p)/(p^2 - 1) + (e + 1)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)
  • PARI
    A332619(n) = sumdiv(n,d,lcm(d,n/d)/d); \\ Antti Karttunen, Nov 12 2021

Formula

a(n) = Sum_{d|n} d / gcd(d, n/d).
From Amiram Eldar, Dec 05 2022: (Start)
Multiplicative with a(p^e) = (p^(e+2)-1)/(p^2-1) + e/2 if e is even, and (p^(e+2)-p)/(p^2-1) + (e + 1)/2 if e is odd.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 7*zeta(6)/(8*zeta(5)) = 0.740543... . (End)

A372968 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} n/gcd(x_1, x_2, ..., x_k, n).

Original entry on oeis.org

1, 1, 3, 1, 7, 7, 1, 15, 25, 11, 1, 31, 79, 55, 21, 1, 63, 241, 239, 121, 21, 1, 127, 727, 991, 621, 175, 43, 1, 255, 2185, 4031, 3121, 1185, 337, 43, 1, 511, 6559, 16255, 15621, 7471, 2395, 439, 61, 1, 1023, 19681, 65279, 78121, 45801, 16801, 3823, 673, 63
Offset: 1

Views

Author

Seiichi Manyama, May 18 2024

Keywords

Examples

			Square array begins:
   1,   1,    1,     1,      1,      1, ...
   3,   7,   15,    31,     63,    127, ...
   7,  25,   79,   241,    727,   2185, ...
  11,  55,  239,   991,   4031,  16255, ...
  21, 121,  621,  3121,  15621,  78121, ...
  21, 175, 1185,  7471,  45801, 277495, ...
		

Crossrefs

Columns k=1..5 give A057660, A350156, A372952, A372961, A371878.
Main diagonal gives A372969.

Programs

  • Mathematica
    f[p_, e_, k_] := (p^((k + 1)*e + k + 1) - p^((k + 1)*e + 1) + p - 1)/(p^(k + 1) - 1); T[1, k_] := 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 25 2024 *)
  • PARI
    T(n, k) = sumdiv(n, d, moebius(n/d)*n/d*sigma(d, k+1));

Formula

T(n,k) = Sum_{d|n} mu(n/d) * (n/d) * sigma_{k+1}(d).
T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} ( gcd(x_1, x_2, ..., x_{k-1}, n)/gcd(x_1, x_2, ..., x_k, n) )^k.
From Amiram Eldar, May 25 2024: (Start)
T(n,k) for a given k is multiplicative with T(p^e, k) = (p^((k+1)*(e+1)) - p^((k+1)*e+1) + p - 1)/(p^(k+1)-1).
Dirichlet g.f. of T(n, k) for a given k: zeta(s)*zeta(s-k-1)/zeta(s-1).
Sum_{m=1..n} T(m, k) ~ c * n^(k+2) / (k+2), where c = zeta(k+2)/zeta(k+1). (End)

A373105 a(n) = sigma_10(n^2)/sigma_5(n^2).

Original entry on oeis.org

1, 993, 58807, 1016801, 9762501, 58395351, 282458443, 1041204193, 3472494301, 9694163493, 25937263551, 59795016407, 137858120557, 280481233899, 574103396307, 1066193093601, 2015992480593, 3448186840893, 6131063781703, 9926520779301
Offset: 1

Views

Author

Seiichi Manyama, May 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(10*e+5) + 1)/(p^5 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, May 25 2024 *)
  • PARI
    a(n) = sigma(n^2, 10)/sigma(n^2, 5);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^5*sigma(d, 10));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x^5, n) )^5.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^5 * sigma_10(d).
From Amiram Eldar, May 25 2024: (Start)
Multiplicative with a(p^e) = (p^(10*e+5) + 1)/(p^5 + 1).
Dirichlet g.f.: zeta(s)*zeta(s-10)/zeta(s-5).
Sum_{k=1..n} a(k) ~ c * n^11 / 11, where c = zeta(11)/zeta(6) = 0.9834383562... . (End)

A056916 Product of the orders of the elements in a cyclic group with n elements.

Original entry on oeis.org

1, 2, 9, 32, 625, 648, 117649, 131072, 4782969, 12500000, 25937424601, 214990848, 23298085122481, 1771684761728, 14416259765625, 562949953421312, 48661191875666868481, 11712917736940032, 104127350297911241532841, 5120000000000000000, 7788651757984142343081
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Feb 10 2002

Keywords

Crossrefs

Programs

  • Maple
    a:=n->mul(denom (k/n), k=1..n): seq(a(n), n=1..18); # Zerinvary Lajos, Apr 26 2008
  • Mathematica
    Table[Product[n/GCD[n,i],{i,0,n-1}],{n,30}] (* Harvey P. Dale, Oct 24 2011 *)

Formula

a(n) = Product_{ d divides n } d^phi(d). - Vladeta Jovovic, Sep 10 2004

Extensions

Edited by Dean Hickerson, Mar 04 2002

A077454 a(n) = sigma_3(n^3)/sigma(n^3).

Original entry on oeis.org

1, 39, 511, 2359, 12621, 19929, 101179, 149943, 368089, 492219, 1611831, 1205449, 4457701, 3945981, 6449331, 9588151, 22722609, 14355471, 44576623, 29772939, 51702469, 62861409, 141611691, 76620873, 196890121, 173850339, 268218727, 238681261, 574336533, 251523909
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2002

Keywords

Examples

			a(2) = sigma_3(2^3)/sigma(2^3) = 585/15 = 39.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(6*e+2) + p^(3*e+1) + 1)/(p^2 + p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 30] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    a(n)=sumdiv(n^3,d,d^3)/sigma(n^3)
    
  • PARI
    a(n) = my(f=factor(n^3)); sigma(f, 3)/sigma(f); \\ Michel Marcus, Sep 09 2020

Formula

a(n) = A001158(n^3)/A000203(n^3).
Multiplicative with a(p^e) = (p^(6*e+2) + p^(3*e+1) + 1)/(p^2 + p + 1). - Amiram Eldar, Sep 09 2020
Sum_{k=1..n} a(k) ~ c * n^7, where c = (zeta(7)*Pi^4/630) * Product_{p prime} (1 - 1/p^2 - 1/p^6 + 1/p^7 - 1/p^8 + 1/p^9) = 0.09343400455... . - Amiram Eldar, Oct 28 2022

A077455 a(n) = sigma_4(n^4)/sigma(n^4).

Original entry on oeis.org

1, 2255, 360205, 8965359, 195688121, 812262275, 11869610005, 36654862063, 190649623129, 441276712855, 2853329308061, 3229367138595, 21506735660905, 26765970561275, 70487839624805, 150121132912367, 548357292625505, 429914900155895, 2096841596815405, 1754414256800439
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2002

Keywords

Examples

			a(2) = sigma_4(2^4)/sigma(2^4) = 69905/31 = 2255.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(12*e+3) + p^(8*e+2) + p^(4*e+1) + 1)/(p^3 + p^2 + p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 20] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    a(n)=sumdiv(n^4,d,d^4)/sigma(n^4)
    
  • PARI
    a(n) = my(f=factor(n^4)); sigma(f, 4)/sigma(f); \\ Michel Marcus, Sep 09 2020

Formula

a(n) = A001158(n^4)/A000203(n^4).
Multiplicative with a(p^e) = (p^(12*e+3) + p^(8*e+2) + p^(4*e+1) + 1)/(p^3 + p^2 + p + 1). - Amiram Eldar, Sep 09 2020
Sum_{k=1..n} a(k) ~ c * n^13, where c = (zeta(3)*zeta(5)*zeta(9)*zeta(13)/13) * Product_{p prime} (1-1/p^2-1/p^3+1/p^5-1/p^7+1/p^8-1/p^12+2/p^13-2/p^14+2/p^15-1/p^16+2/p^17-3/p^18+1/p^19+1/p^21-1/p^22-1/p^26-1/p^27) = 0.048281563902... . - Amiram Eldar, Nov 20 2022

A077456 a(n) = sigma_5(n^5)/sigma(n^5).

Original entry on oeis.org

1, 549791, 2337334621, 567767102431, 76323251878121, 1285045538614211, 68398022066406901, 595065340418751455, 8138648440293876241, 41961836973324022711, 611595047235520833101, 1327061705176829563651, 17543094367661056941241, 37604616949911916507691
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(20*e+4) + p^(15*e+3) + p^(10*e+2) + p^(5*e+1) + 1)/(p^4 + p^3 + p^2 + p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 20] (* Amiram Eldar, Sep 09 2020 *)
    Table[DivisorSigma[5,n^5]/DivisorSigma[1,n^5],{n,20}] (* Harvey P. Dale, Mar 05 2022 *)
  • PARI
    a(n)=sumdiv(n^5,d,d^5)/sigma(n^5)
    
  • PARI
    a(n) = my(f=factor(n^5)); sigma(f, 5)/sigma(f); \\ Michel Marcus, Sep 09 2020

Formula

a(n) = A001160(n^5)/A000203(n^5).
Multiplicative with a(p^e) = (p^(20*e+4) + p^(15*e+3) + p^(10*e+2) + p^(5*e+1) + 1)/(p^4 + p^3 + p^2 + p + 1). - Amiram Eldar, Sep 09 2020

A332791 a(1) = 1; a(n+1) = Sum_{d|n} phi(d) * a(d).

Original entry on oeis.org

1, 1, 2, 5, 12, 49, 104, 625, 2512, 15077, 60358, 603581, 2414438, 28973257, 173840168, 1390721397, 11125773688, 178012379009, 1068074289230, 19225337206141, 153802697709496, 1845632372514581, 18456323725749392, 406039121966486625, 3248312975734309938
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[EulerPhi[d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 25}]
    a[1] = 1; a[n_] := a[n] = Sum[a[(n - 1)/GCD[n - 1, k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 25}]

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} a(n/gcd(n, k)).
a(n) = Sum_{k=1..n} a(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A369779 a(n) = n * Sum_{p|n, p prime} phi(n/p) / p.

Original entry on oeis.org

0, 1, 1, 2, 1, 8, 1, 8, 6, 22, 1, 20, 1, 44, 26, 32, 1, 66, 1, 48, 48, 112, 1, 80, 20, 158, 54, 92, 1, 172, 1, 128, 116, 274, 62, 156, 1, 344, 162, 192, 1, 348, 1, 228, 174, 508, 1, 320, 42, 540, 278, 320, 1, 594, 130, 368, 348, 814, 1, 448, 1, 932, 306, 512, 176
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 31 2024

Keywords

Comments

Dirichlet convolution of A010051(n) and A002618(n). - Wesley Ivan Hurt, Jul 10 2025

Crossrefs

Programs

  • Mathematica
    Table[n*DivisorSum[n, EulerPhi[n/#]/# &, PrimeQ[#] &], {n, 100}]
  • PARI
    A369779(n) = if(1==n, 0, my(f=factor(n)); n*sum(i=1, #f~, (eulerphi(n/f[i, 1])/f[i,1]))); \\ Antti Karttunen, Jan 23 2025

Formula

From Wesley Ivan Hurt, Jul 10 2025: (Start)
a(n) = Sum_{d|n} A010051(d) * A002618(n/d).
a(p^k) = ceiling(p^(2k-2)-p^(2k-3)) for p prime and k>=1. (End)
Previous Showing 21-30 of 65 results. Next