cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A361718 Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 02 2023

Keywords

Comments

Also the number of sets of n nonempty subsets of {1..n}, k of which are singletons, such that there is only one way to choose a different element from each. For example, row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}} {{1},{2},{1,2,3}}
{{3},{1,2},{2,3}} {{1},{3},{1,2,3}}
{{3},{1,3},{2,3}} {{2},{3},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,    15,     9,    1;
  0,   316,   198,   28,  1;
  0, 16885, 10710, 1610, 75, 1;
  ...
		

Crossrefs

Cf. A058876 (mirror), A361579, A224069.
Row-sums are A003024, unlabeled A003087.
Column k = 1 is A003025(n) = |n*A134531(n)|.
Column k = n-1 is A058877.
For fixed sinks we get A368602.
A058891 counts set-systems, unlabeled A000612.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
    nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]

Formula

T(n,k) = A368602(n,k) * binomial(n,k). - Gus Wiseman, Jan 03 2024

A368602 Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 79, 33, 7, 1, 0, 3377, 1071, 161, 15, 1, 0, 362431, 92289, 10591, 705, 31, 1, 0, 93473345, 19856703, 1832705, 93375, 2945, 63, 1, 0, 56272471039, 10249747713, 789619327, 32382465, 782719, 12033, 127, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 02 2024

Keywords

Comments

Also the number of set-systems with n vertices and n edges such that {i} is a singleton edge iff i <= k, and such that there is only one way to choose a different vertex from each edge.

Examples

			Triangle begins:
    1
    0    1
    0    1    1
    0    5    3    1
    0   79   33    7    1
    0 3377 1071  161   15    1
    ...
Row n = 3 counts the following set-systems:
  {{1},{1,2},{1,3}}    {{1},{2},{1,3}}    {{1},{2},{3}}
  {{1},{1,2},{2,3}}    {{1},{2},{2,3}}
  {{1},{1,3},{2,3}}    {{1},{2},{1,2,3}}
  {{1},{1,2},{1,2,3}}
  {{1},{1,3},{1,2,3}}
		

Crossrefs

Column k = n-1 is A000225 = A058877(n)/n.
Column k = 1 is A134531 (up to sign) or A003025(n)/n, non-fixed A350415.
For any choice of k sinks we get A361718.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Union@@Cases[#,{_}]==Range[k] && Length[Select[Tuples[#],UnsameQ@@#&]]==1&]], {n,0,3},{k,0,n}]

Formula

T(n,k) = A361718(n,k)/binomial(n,k).

Extensions

More terms from Alois P. Heinz, Jan 04 2024

A091913 Triangle read by rows: a(n,k) = C(n,k)*(2^(n-k) - 1) for k= n, where k=0..max(n-1,0).

Original entry on oeis.org

0, 1, 3, 2, 7, 9, 3, 15, 28, 18, 4, 31, 75, 70, 30, 5, 63, 186, 225, 140, 45, 6, 127, 441, 651, 525, 245, 63, 7, 255, 1016, 1764, 1736, 1050, 392, 84, 8, 511, 2295, 4572, 5292, 3906, 1890, 588, 108, 9, 1023, 5110, 11475, 15240, 13230, 7812, 3150, 840, 135, 10, 2047
Offset: 0

Views

Author

Ross La Haye, Mar 10 2004

Keywords

Comments

Row lengths are 1,1,2,3,4,... = A028310. - M. F. Hasler, Jul 21 2012
Rows: Sum of the n-th row = A001047(n); Sum of the n-th row excluding column 0 = A028243(n+1). Columns: a(n,0) = A000225(n); a(n,1) = A058877(n). Diagonals: a(n,n-2) = A045943(n-1). Also note that the sums of the antidiagonals = A006684.
As an infinite lower triangular matrix * the Bernoulli numbers as a vector (Cf. A027641) = the natural numbers: [1, 2, 3, ...]. The same matrix * the Bernoulli number version starting [1, 1/2, 1/6, ...] = A001787: (1, 4, 12, 32, ...). - Gary W. Adamson, Mar 13 2012

Examples

			Triangle begins
   0;
   1;
   3,   2;
   7,   9,   3;
  15,  28,  18,   4;
  31,  75,  70,  30,   5;
  63, 186, 225, 140,  45,   6;
  ...
a(5,3) = 30 because C(5,3) = 10, 2^(5 - 3) - 1 = 3 and 10 * 3 = 30.
		

Crossrefs

Formula

For k>=n, a(n, k) = 0; for k < n, a(n, k) = C(n, k) * (2^(n-k) - 1) = Sum [C(n,k) * C(n-k, m), {m=1 to n-k}]. [Formula corrected Aug 22 2006]
The triangle (1; 3,2; 7,9,3; ...) = A007318^2 - A007318, then delete the right border of zeros. - Gary W. Adamson, Nov 16 2007
O.g.f.: 1/( (1 - (1 + x)*t)*(1 - (2 + x)*t) ) = 1 + (3 + 2*x)*t + (7 + 9*x + 3*x^2)*t^2 + .... - Peter Bala, Jul 16 2013

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A126136 Binomial transform of A107430.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 8, 7, 9, 3, 16, 15, 28, 16, 6, 32, 31, 75, 55, 40, 10, 64, 63, 186, 156, 165, 75, 20, 128, 127, 441, 399, 546, 336, 175, 35, 256, 255, 1016, 960, 1596, 1176, 896, 336, 70, 512, 511, 2295, 2223, 4320, 3564, 3528, 1848, 756, 126, 1024, 1023, 5110, 5020, 11115, 9855, 11880, 7680, 4620, 1470, 252
Offset: 0

Views

Author

Gary W. Adamson, Dec 18 2006

Keywords

Comments

Row sums = powers of 3.

Examples

			First few rows of the triangle are:
1;
2, 1;
4, 3, 2;
8, 7, 9, 3;
16, 15, 28, 16, 6;
32, 31, 75, 55, 40, 10;
...
		

Crossrefs

Programs

  • PARI
    tabl(nn) = {p = matrix(nn+1, nn+1, n, k, binomial(n-1, k-1)); m = matrix(nn+1, nn+1, n, k, if (k<=n, binomial(n-1, (k-1)\2), 0)); r = p*m; for (n=0, nn, for (k=0, n, print1(r[n+1,k+1], ", ");); print(););} \\ Michel Marcus, Jul 03 2017

Formula

Given M = A107430 as an infinite lower triangular matrix and P = Pascal's triangle, A126136 = P*M.

Extensions

More terms from Philippe Deléham, Jul 02 2017

A130265 Triangle read by rows: matrix product A007318 * A051340.

Original entry on oeis.org

1, 2, 2, 4, 5, 3, 8, 10, 10, 4, 16, 19, 23, 17, 5, 32, 36, 46, 46, 26, 6, 64, 69, 87, 102, 82, 37, 7, 128, 134, 162, 204, 204, 134, 50, 8, 256, 263, 303, 387, 443, 373, 205, 65, 9, 512, 520, 574, 718, 886, 886, 634, 298, 82, 10
Offset: 0

Views

Author

Gary W. Adamson, May 18 2007

Keywords

Examples

			First few rows of the triangle are:
   1;
   2,  2;
   4,  5,  3;
   8, 10, 10,   4;
  16, 19, 23,  17,  5;
  32, 36, 46,  46, 26,  6;
  64, 69, 87, 102, 82, 37,  7;
		

Crossrefs

Programs

  • Magma
    A130265:= func< n,k | k eq n select n+1 else (k+1)*Binomial(n,k) + (&+[Binomial(n, j+k): j in [1..n-k]]) >;
    [A130265(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2023
    
  • Maple
    A051340 := proc(n,k)
        if k = n then
            n+1 ;
        elif k <= n then
            1;
        else
            0;
        end if;
    end proc:
    A130265 := proc(n,k)
        add( binomial(n,j)*A051340(j,k),j=k..n) ;
    end proc:
    seq(seq(A130265(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Aug 06 2016
  • Mathematica
    T[n_, k_]:= (k+1)*Binomial[n,k] + Binomial[n,k+1]*Hypergeometric2F1[1, k-n+1, k+2, -1];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2023 *)
  • SageMath
    def A130265(n,k): return (k+1)*binomial(n,k) + sum(binomial(n, j+k) for j in range(1,n-k+1))
    flatten([[A130265(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 18 2023

Formula

Binomial transform of A051340.
From G. C. Greubel, Mar 18 2023: (Start)
T(n, k) = (k+1)*binomial(n,k) + Sum_{j=1..n-k} binomial(n, j+k).
T(n, k) = (k+1)*binomial(n,k) + binomial(n,k+1)*Hypergeometric2F1([1, k-n+1], [k+2], -1).
T(2*n, n) = (1/2)*T(2*n+1, n) = A258431(n+1).
Sum_{k=0..n} T(n, k) = A001787(n+1).
Sum_{k=0..n-1} T(n, k) = A058877(n+1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A084633(n). (End)

Extensions

Missing term inserted by R. J. Mathar, Aug 06 2016

A178759 Expansion of e.g.f. 3*x*exp(x)*(exp(x)-1)^2.

Original entry on oeis.org

0, 0, 0, 18, 144, 750, 3240, 12642, 46368, 163350, 559800, 1881066, 6229872, 20406750, 66273480, 213759090, 685601856, 2188698150, 6959413080, 22053083514, 69672773520, 219535296750, 690106487400, 2164714299138, 6777100916064, 21179698653750, 66083277045240, 205880260458762
Offset: 0

Views

Author

Geoffrey Critzer, Dec 26 2010

Keywords

Comments

a(n) is the sum of the digits in ternary sequences of length n, in which each element of the alphabet, {0,1,2} appears at least once in the sequence.
Generally, the e.g.f. for such sum of n-ary sequences (taken on an alphabet of {0,1,2,...,n-1}) is binomial(n,2)*x*exp(x)*(exp(x)-1)^(n-1).
Cf. A058877 which is the sum of the digits in such binary sequences.

Examples

			a(3)=18 because there are six length 3 sequences on {0,1,2} that contain at least one 0, at least one 1 and at least one 2: (0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0).  The digits sum to 18.
		

Crossrefs

Programs

  • GAP
    List([0..30], n -> (3^n - 3*2^n + 3)*n); # G. C. Greubel, Jan 24 2019
  • Magma
    [(3^n - 3*2^n + 3)*n: n in [0..30]]; // G. C. Greubel, Jan 24 2019
    
  • Mathematica
    Range[0,20]! CoefficientList[Series[3x Exp[x](Exp[x]-1)^2,{x,0,20}],x]
    Table[(3^n -3*2^n +3)*n, {n,0,30}] (* G. C. Greubel, Jan 24 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0,0],Vec(serlaplace(3*x*exp(x)*(exp(x)-1)^2))) \\ Joerg Arndt, May 13 2013
    
  • PARI
    concat([0,0,0], Vec(6*x^3*(11*x^2-12*x+3)/((x-1)^2*(2*x-1)^2*(3*x-1)^2) + O(x^100))) \\ Colin Barker, Nov 30 2014
    
  • PARI
    vector(30, n, n--; (3^n - 3*2^n + 3)*n) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [(3^n - 3*2^n + 3)*n for n in (0..30)] # G. C. Greubel, Jan 24 2019
    

Formula

E.g.f.: 3*x*exp(x)*(exp(x)-1)^2.
a(n) = (3^n - 3*2^n + 3)*n. - Mark van Hoeij, May 13 2013
G.f.: 6*x^3*(11*x^2-12*x+3) / ((x-1)^2*(2*x-1)^2*(3*x-1)^2). - Colin Barker, Nov 30 2014

A276659 Accumulation of the upper left triangle used in binomial transform of nonnegative integers.

Original entry on oeis.org

0, 2, 11, 39, 114, 300, 741, 1757, 4052, 9162, 20415, 44979, 98214, 212888, 458633, 982905, 2097000, 4456278, 9436995, 19922735, 41942810, 88080132, 184549101, 385875669, 805306044, 1677721250, 3489660551, 7247756907, 15032385102, 31138512432, 64424508945
Offset: 0

Views

Author

Keywords

Comments

After 0, is this the second column of A108284? [Bruno Berselli, Sep 13 2016 - this comment may be removed if the property is confirmed.]

Examples

			Starting from the triangle:
   0,  1,  2,  3,  4,  5, ...
   1,  3,  5,  7,  9, ...
   4,  8, 12, 16, ...
  12, 20, 28, ...
  32, 48, ...
  80, ...
  ...
the first terms are:
a(0) = 0;
a(1) = a(0) + 1 + 1 = 2;
a(2) = a(1) + 4 + 3 + 2 = 11;
a(3) = a(2) + 12 + 8 + 5 + 3 = 39, etc.
First column is A001787: n*2^(n-1).
		

Crossrefs

Programs

  • Magma
    [(2^(n+2)-n-3)*n/2: n in [0..40]]; // Vincenzo Librandi, Sep 13 2016
    
  • Maple
    A276659:=n->n*(2^(n+2) - n - 3)/2: seq(A276659(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    t[0, k_] := k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 1, k + 1]; a[n_] := Sum[t[m, k], {m, 0, n}, {k, 0, n - m}]; Table[a[n], {n, 0, 30}]
    Table[(2^(n + 2) - n - 3) n / 2, {n, 0, 30}] (* Vincenzo Librandi, Sep 13 2016 *)
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(2-3*x)/((1-x)^3*(1-2*x)^2))) \\ Altug Alkan, Sep 14 2017

Formula

O.g.f.: x*(2 - 3*x)/((1 - x)^3*(1 - 2*x)^2).
E.g.f.: x*exp(x)*(8*exp(x) - x - 4)/2.
a(n) = n*(2^(n+2) - n - 3)/2.
a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5) for n > 4.
a(n) = a(n-1) + A058877(n+1). - R. J. Mathar, Sep 14 2016
a(n) = Sum_{k=2..n+3} Sum_{i=2..n+3} k * C(n-i+3,k). - Wesley Ivan Hurt, Sep 20 2017

Extensions

Edited and extended by Bruno Berselli, Sep 13 2016

A369919 Triangular array read by rows. T(n,k) is the number of labeled posets on [n] of rank at most one with exactly k elements of positive indegree, n >= 0, 0 <= k <= max{0,n-1}.

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 3, 1, 28, 54, 4, 1, 75, 490, 270, 5, 1, 186, 3375, 6860, 1215, 6, 1, 441, 20181, 118125, 84035, 5103, 7, 1, 1016, 111132, 1668296, 3543750, 941192, 20412, 8, 1, 2295, 580644, 21003948, 116363646, 95681250, 9882516, 78732, 9
Offset: 0

Views

Author

Geoffrey Critzer, Feb 05 2024

Keywords

Comments

The rank of a poset is the number of cover relations in a maximal chain.
Equivalently, T(n,k) is the number of labeled posets P on [n] of rank at most one such that |image(P)| = k.

Examples

			Triangle begins
  1;
  1;
  1,   2;
  1,   9,    3;
  1,  28,   54,    4;
  1,  75,  490,  270,    5;
  1, 186, 3375, 6860, 1215, 6;
  ...
		

Crossrefs

Cf. A001831 (row sums), A058877, A263859, A369921.

Programs

  • Mathematica
    nn = 9; Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[Series[ Sum[ Exp[y  x]^(2^n - 1)  x^n/n!, {n, 0, nn}], {x, 0, nn}], {x, y}]] // Grid

Formula

E.g.f.: Sum_{n>=0} x^n/n!*exp(y*x)^(2^n-1).
T(n,1) = A058877(n).

A381888 Triangle read by rows: T(n, k) = (n + 1) * Sum_{j=k..n} binomial(n, j) * Eulerian1(j, j - k).

Original entry on oeis.org

1, 2, 2, 3, 9, 3, 4, 28, 28, 4, 5, 75, 165, 75, 5, 6, 186, 786, 786, 186, 6, 7, 441, 3311, 6181, 3311, 441, 7, 8, 1016, 12888, 40888, 40888, 12888, 1016, 8, 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9, 10, 5110, 168670, 1312750, 3445510, 3445510, 1312750, 168670, 5110, 10
Offset: 0

Views

Author

Peter Luschny, Mar 11 2025

Keywords

Comments

Consider A381706, the number of permutations of k chosen numbers in [n] with i-1 descents, as a sequence of squares of size 1x1, 2x2, 3x3, ..., as displayed in the example section of A381706. Conjecture: T(n, k) is the sum of column k+1 of the (n+1)th square; in other words: T(n, k) = Sum_{j=0..n} b(n+1, j+1, k+1).

Examples

			Triangle starts:
  [0] 1;
  [1] 2,    2;
  [2] 3,    9,     3;
  [3] 4,   28,    28,      4;
  [4] 5,   75,   165,     75,      5;
  [5] 6,  186,   786,    786,    186,      6;
  [6] 7,  441,  3311,   6181,   3311,    441,     7;
  [7] 8, 1016, 12888,  40888,  40888,  12888,  1016,    8;
  [8] 9, 2295, 47529, 241191, 404361, 241191, 47529, 2295, 9;
		

Crossrefs

Cf. A046802, A173018 (Eulerian1), A122045 (Euler), A058877 (column 1), A007526 (row sums), A381706 (generalized Eulerian).

Programs

  • Maple
    T := (n, k) -> (n + 1)*add(binomial(n, j)*combinat:-eulerian1(j, j - k), j = k .. n):
    for n from 0 to 8 do seq(T(n, k), k=0..n) od;
    # Using the e.g.f.:
    egf := ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1))))/(exp(x*(y - 1)) - y)^2:
    ser := simplify(series(egf, x, 10)):
    seq(seq(n!*coeff(coeff(ser, x, n), y, k), k = 0..n), n = 0..9);
  • SageMath
    # Using function eulerian1 from A173018.
    def T(n: int, k: int) -> int:
        return (n + 1) * sum(binomial(n, j) * eulerian1(j, j-k) for j in (k..n))
    def Trow(n) -> list[int]: return [T(n, k) for k in (0..n)]
    for n in (0..8): print(f"{n}: ", Trow(n))

Formula

T(n, k) = n! * [y^k] [x^n] ((y - 1)*(y*exp(x*y)*(x*y + 1) - (x + 1)*exp(x*(2*y - 1)))) / (exp(x*(y - 1)) - y)^2.
Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n * (n + 1) * Euler(n).
T(n, k) = (n + 1) * A046802(n, k).

A171150 Triangle related to T(x,2x).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 6, 20, 28, 15, 1, 10, 50, 85, 75, 31, 1, 20, 105, 255, 294, 186, 63, 1, 35, 245, 651, 1029, 903, 441, 127, 1, 70, 504, 1736, 3108, 3612, 2568, 1016, 255, 1, 126, 1134, 4116, 9324, 12636, 11556, 6921, 2295, 511, 1, 252, 2310, 10290, 25080, 42120, 46035, 34605, 17930, 5110, 1023, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2009

Keywords

Comments

Let the triangle T_(x,y)=T defined by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1.
This triangle gives the coefficients of Sum_{k=0..n} T(n,k) where y=2x.
T_(0,0) = A053121, T_(1,2) = A039599, T_(2,4) = A124575.
First column of T_(x,2x) is given by A126222.

Examples

			Triangle begins:
   1;
   1,  1;
   2,  3,  1;
   3,  9,  7,  1;
   6, 20, 28, 15,  1;
  10, 50, 85, 75, 31,  1;
  ...
		

Crossrefs

Row sums give A000984.

Formula

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001405(n), A000984(n), A133158(n) for x = -1, 0, 1, 2 respectively.

Extensions

More terms from Alois P. Heinz, Jan 31 2023
Previous Showing 11-20 of 22 results. Next