cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A151542 Generalized pentagonal numbers: a(n) = 12*n + 3*n*(n-1)/2.

Original entry on oeis.org

0, 12, 27, 45, 66, 90, 117, 147, 180, 216, 255, 297, 342, 390, 441, 495, 552, 612, 675, 741, 810, 882, 957, 1035, 1116, 1200, 1287, 1377, 1470, 1566, 1665, 1767, 1872, 1980, 2091, 2205, 2322, 2442, 2565, 2691, 2820, 2952, 3087, 3225, 3366, 3510, 3657, 3807, 3960
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2009

Keywords

Crossrefs

The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    s=0;lst={};Do[AppendTo[lst,s+=n],{n,12,6!,3}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 05 2010 *)
    LinearRecurrence[{3,-3,1}, {0,12,27}, 50] (* or *) With[{nn = 50}, CoefficientList[Series[(3/2)*(8*x + x^2)*Exp[x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 26 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((3/2)*(8*x + x^2)*exp(x)))) \\ G. C. Greubel, May 26 2017
    
  • PARI
    a(n)=(3*n^2+21*n)/2 \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = a(n-1) + 3*n + 9 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(4 - 3*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
From G. C. Greubel, May 26 2017: (Start)
a(n) = 3*n*(n+7)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*(8*x + x^2)*exp(x). (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 121/490.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/21 - 319/4410. (End)
a(n) = A003154(n+1) - A060544(n). - Leo Tavares, Mar 26 2022

A140673 a(n) = 3*n*(n + 5)/2.

Original entry on oeis.org

0, 9, 21, 36, 54, 75, 99, 126, 156, 189, 225, 264, 306, 351, 399, 450, 504, 561, 621, 684, 750, 819, 891, 966, 1044, 1125, 1209, 1296, 1386, 1479, 1575, 1674, 1776, 1881, 1989, 2100, 2214, 2331, 2451, 2574, 2700, 2829, 2961, 3096
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

a(n) equals the number of vertices of the A256666(n)-th graph (see Illustration of initial terms in A256666 Links). - Ivan N. Ianakiev, Apr 20 2015

Crossrefs

Cf. A055998.
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    Table[Sum[i + n - 3, {i, 6, n}], {n, 5, 52}] (* Zerinvary Lajos, Jul 11 2009 *)
    Table[3 n (n + 5)/2, {n, 0, 50}] (* Bruno Berselli, Sep 05 2018 *)
    LinearRecurrence[{3,-3,1},{0,9,21},50] (* Harvey P. Dale, Jul 20 2023 *)
  • PARI
    concat(0, Vec(3*x*(3 - 2*x)/(1 - x)^3 + O(x^100))) \\ Michel Marcus, Apr 20 2015
    
  • PARI
    a(n) = 3*n*(n+5)/2; \\ Altug Alkan, Sep 05 2018

Formula

a(n) = A055998(n)*3 = (3*n^2 + 15*n)/2 = n*(3*n + 15)/2.
a(n) = 3*n + a(n-1) + 6 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(3 - 2*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 18*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 137/450.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/15 - 47/450. (End)

A140674 a(n) = n*(3*n + 17)/2.

Original entry on oeis.org

0, 10, 23, 39, 58, 80, 105, 133, 164, 198, 235, 275, 318, 364, 413, 465, 520, 578, 639, 703, 770, 840, 913, 989, 1068, 1150, 1235, 1323, 1414, 1508, 1605, 1705, 1808, 1914, 2023, 2135, 2250, 2368, 2489, 2613, 2740, 2870, 3003, 3139
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

Formula

a(n) = (3*n^2 + 17*n)/2.
a(n) = 7*n + 3*A000217(n). - Reinhard Zumkeller, May 28 2008
a(n) = 3*n + a(n-1) + 7 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: x*(10 - 7*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 20*x)*exp(x). - G. C. Greubel, Jul 17 2017

A112414 a(n) = 3*n + 7.

Original entry on oeis.org

7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184
Offset: 0

Views

Author

Zerinvary Lajos, Dec 09 2005

Keywords

Comments

At least the first 2 million terms from a(1) on coincide with the corresponding terms of A086822(n+2). - R. J. Mathar, Aug 15 2008

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Oct 30 2024: (Start)
G.f.: (7 - 4*x)/(1 - x)^2.
E.g.f.: (7 + 3*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = A016933(n+2)/2 = A059845(n+1) - A059845(n). (End)

Extensions

Better definition from T. D. Noe, Nov 30 2006

A185874 Second accumulation array of A051340, by antidiagonals.

Original entry on oeis.org

1, 3, 4, 6, 11, 10, 10, 21, 26, 20, 15, 34, 48, 50, 35, 21, 50, 76, 90, 85, 56, 28, 69, 110, 140, 150, 133, 84, 36, 91, 150, 200, 230, 231, 196, 120, 45, 116, 196, 270, 325, 350, 336, 276, 165, 55, 144, 248, 350, 435, 490, 504, 468, 375, 220, 66, 175, 306, 440, 560, 651, 700, 696, 630, 495, 286, 78, 209, 370, 540, 700, 833, 924, 960, 930, 825, 638, 364, 91, 246, 440, 650, 855, 1036, 1176, 1260, 1275, 1210, 1056, 806, 455, 105, 286, 516, 770, 1025, 1260, 1456, 1596, 1665, 1650, 1540, 1326, 1001, 560
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain: A051340 < A141419 < A185874 < A185875 < A185876 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
.   1,   3,   6,   10,   15,   21,   28,   36,   45,   55, ...
.   4,  11,  21,   34,   50,   69,   91,  116,  144,  175, ...
.  10,  26,  48,   76,  110,  150,  196,  248,  306,  370, ...
.  20,  50,  90,  140,  200,  270,  350,  440,  540,  650, ...
.  35,  85, 150,  230,  325,  435,  560,  700,  855, 1025, ...
.  56, 133, 231,  350,  490,  651,  833, 1036, 1260, 1505, ...
.  84, 196, 336,  504,  700,  924, 1176, 1456, 1764, 2100, ...
. 120, 276, 468,  696,  960, 1260, 1596, 1968, 2376, 2820, ...
. 165, 375, 630,  930, 1275, 1665, 2100, 2580, 3105, 3675, ...
. 220, 495, 825, 1210, 1650, 2145, 2695, 3300, 3960, 4675, ...
...
		

Crossrefs

Row 1 to 5: A000217, A115056, 2*A140096, 10*A000096, 5*A059845.
Column 1 to 3: A000292, A051925, A267370 and 3*A005581.
Main diagonal: A117066.

Programs

  • Mathematica
    f[n_, k_] := (1/12)*k*n*(1 + n)*(1 + 3*k + 2*n);
    TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]
    Table[f[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten

Formula

T(n,k) = k*n*(n+1)*(2*n+3*k+1)/12 for k>=1, n>=1.

Extensions

Edited by Bruno Berselli, Jan 14 2016

A095871 Triangle read by rows: T(n,k)=(n+1)*(3*(n+1)-1)/2-k*(3*k-1)/2.

Original entry on oeis.org

1, 5, 4, 12, 11, 7, 22, 21, 17, 10, 35, 34, 30, 23, 13, 51, 50, 46, 39, 29, 16, 70, 69, 65, 58, 48, 35, 19, 92, 91, 87, 80, 70, 57, 41, 22, 117, 116, 112, 105, 95, 82, 66, 47, 25, 145, 144, 140, 133, 123, 110, 94, 75, 53, 28, 176, 175, 171, 164, 154, 141, 125, 106, 84, 59
Offset: 1

Views

Author

Gary W. Adamson, Jun 10 2004, Jul 28 2008

Keywords

Comments

Octagonal pyramidal number triangle, read by rows.
The triangle is generated from the product B*A of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
and B =
1 0 0 0...
1 4 0 0...
1 4 7 0...
1 4 7 10...
T(n,0)=A000326(n+1)
T(n,2)=A059845(n+2)
T(n,n)=3*n+1

Examples

			Column 3 = A059845: 7, 17, 30, 46, 65...; while rightmost terms of rows are 1, 4, 7, 10...
First few rows of the triangle =
  1;
  5, 4;
  12, 11, 7;
  22, 21, 17, 10;
  35, 34, 30, 23, 13;
  51, 50, 46, 39, 29, 16;
  70, 69, 65, 58, 48, 35, 19;
  ...
		

Crossrefs

Cf. A095872, A000326, A059845, A002414 (row sums)

Programs

  • PARI
    T(n, k) = local(i); if(k>n,0,(n+1)*(3*(n+1)-1)/2-k*(3*k-1)/2)
    for(i=0,10, for(j=0,i,print1(T(i,j),", "));print()) \\ Lambert Klasen

Formula

Triangle read by rows, T(n,k) = sum {j=k..n} 3*j - 2 = A000012 * ((3*j - 2) * 0^(n-k)) * A000012; 1<=k<=n. E.g. T(5,3) = 30 = (7 + 10 + 13).

Extensions

More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 21 2005

A095872 Square of the lower triangular matrix T[i,j] = 3j-2 for 1<=j<=i, read by rows.

Original entry on oeis.org

1, 5, 16, 12, 44, 49, 22, 84, 119, 100, 35, 136, 210, 230, 169, 51, 200, 322, 390, 377, 256, 70, 176, 455, 580, 624, 560, 361, 70, 276, 455, 580, 624, 560, 361, 92, 364, 609, 800, 910, 912, 779, 484, 117, 464, 784, 1050, 1235, 1312, 1254, 1034, 625, 145, 576, 980, 1330, 1599
Offset: 1

Views

Author

Gary W. Adamson, Jun 10 2004

Keywords

Comments

Arranged by flush left columns (k=1,2,3...), (k=1) column = A000326, the pentagonal numbers (1, 5, 12, 22, 35...). The Octagonal pyramidal number triangle of A095871 is generated from A095872 by dividing the k-th row by the n-th term in the series 1, 4, 7, 10...(k starting with 1). Dividing the 3rd column of A095872 (49, 119, 210, 322, 455...) by 7 generates A059845: 7, 17, 30, 46, 65... Rightmost terms of each row of A095872 are A016778 (1, 16, 49, 100, 169...); i.e. squares of 1, 4, 7, 10... Row sums of A095872 are 1, 21, 105, 325, 780, 1596, 2926... Row sums of A095871 are the octagonal pyramidal numbers, A002414: 1, 9, 30, 70, 135, 231, 364...
[Editor's note: OEIS' "TABL" format (fmt=2) rather displays the transposed matrix as upper triangular matrix.]

Examples

			Let M = the infinite lower triangular matrix in the format exemplified by a 3rd order matrix: [1 0 0 / 1 4 0 / 1 4 7]: i.e. for the n-th order matrix, each row has n terms in the series 1, 4, 7, 10... with the rest of the spaces filled in with zeros. Square the matrix and delete the zeros; then read by rows.
[1 0 0 / 1 4 0 / 1 4 7]^2 = [1 0 0 / 5 16 0 / 12 44 49]; then delete the zeros and read by rows: 1, 5, 16, 12, 44, 49...
		

Crossrefs

Programs

  • PARI
    A095802(n)={ my( r=sqrtint(2*n)+1, T=matrix(r,r,i,j,if(j>=i,3*j-2))^2); concat(vector(#T,i,vecextract(T[,i],2^i-1)))[n] } \\ M. F. Hasler, Apr 18 2009

Formula

a(k(k+1)/2) = (3k-2)^2 (diagonal elements: squares of the initial series), a(k(k-1)/2+1) = A000326(k) (1st column: pentagonal numbers). - M. F. Hasler, Apr 18 2009

Extensions

Edited and extended by M. F. Hasler, Apr 18 2009

A370238 a(n) = n*(3*n + 23)/2.

Original entry on oeis.org

0, 13, 29, 48, 70, 95, 123, 154, 188, 225, 265, 308, 354, 403, 455, 510, 568, 629, 693, 760, 830, 903, 979, 1058, 1140, 1225, 1313, 1404, 1498, 1595, 1695, 1798, 1904, 2013, 2125, 2240, 2358, 2479, 2603, 2730, 2860, 2993, 3129, 3268, 3410, 3555, 3703, 3854, 4008
Offset: 0

Views

Author

Torlach Rush, Feb 12 2024

Keywords

Comments

a(a(1)) = A000566(a(1)). This is also true for each of the sequences provided in the formulae below; e.g., A151542(A151542(1)) = A000566(A151542(1)).

Crossrefs

Programs

  • Mathematica
    Table[n(3n+23)/2,{n,0,48}] (* James C. McMahon, Feb 20 2024 *)
  • Python
    def a(n): return n*(3*n+23)//2

Formula

a(n) = n*(3*n + 23)/2 = A277976(n)/2.
G.f.: x*(13-10*x)/(1-x)^3.
a(n) = A151542(n) + n.
a(n) = A140675(n) + 2*n.
a(n) = A140674(n) + 3*n.
a(n) = A140673(n) + 4*n.
a(n) = A140672(n) + 5*n.
a(n) = A059845(n) + 6*n.
a(n) = A140091(n) + 7*n.
a(n) = A140090(n) + 8*n.
a(n) = A115067(n) + 9*n.
a(n) = A045943(n) + 10*n.
a(n) = A005449(n) + 11*n.
a(n) = A000326(n) + A008594(n).
Sum_{n>=1} 1/a(n) = 823467/2769844 + sqrt(3)*Pi/69 -3*log(3)/23 = 0.2328608... - R. J. Mathar, Apr 23 2024
E.g.f.: exp(x)*x*(26 + 3*x)/2. - Stefano Spezia, Apr 26 2024
Previous Showing 11-18 of 18 results.