cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A379587 Array read by ascending antidiagonals: A(n, k) = (k^n - 1)^2/(k - 1), with k >= 2.

Original entry on oeis.org

0, 1, 0, 9, 2, 0, 49, 32, 3, 0, 225, 338, 75, 4, 0, 961, 3200, 1323, 144, 5, 0, 3969, 29282, 21675, 3844, 245, 6, 0, 16129, 264992, 348843, 97344, 9245, 384, 7, 0, 65025, 2389298, 5589675, 2439844, 335405, 19494, 567, 8, 0, 261121, 21516800, 89467563, 61027344, 12090125, 960000, 37303, 800, 9, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2024

Keywords

Examples

			The array begins as:
    0,     0,      0,       0,        0,        0, ...
    1,     2,      3,       4,        5,        6, ...
    9,    32,     75,     144,      245,      384, ...
   49,   338,   1323,    3844,     9245,    19494, ...
  225,  3200,  21675,   97344,   335405,   960000, ...
  961, 29282, 348843, 2439844, 12090125, 47073606, ...
  ...
		

Crossrefs

Cf. A027620, A060867 (k=2), A060868 (k=3), A060869 (k=4), A060870 (k=5), A060871 (k=7), A361475, A379588 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(k^n-1)^2/(k-1); Table[A[n-k+2,k],{n,0,9},{k,2,n+2}]//Flatten

Formula

G.f. of column k: (1 - k)*x*(1 + k*x)/((1 - x)*(1 - k*x)*(1 - k^2*x)).
E.g.f. of column k: exp(x)*(1 - 2*exp((k-1)*x) + exp((k^2-1)*x))/(k - 1).
A(2, n) = A027620(n-2) for n > 1.

A081474 Number of distinct lines through the origin in n-dimensional cube of side length n.

Original entry on oeis.org

0, 1, 5, 49, 529, 7471, 112825, 2078455, 42649281, 997784221, 25875851825, 742641202183, 23283999690561, 793616663524231, 29188521870580929, 1152885848976064513, 48659336030073207425, 2185894865613157551481, 104126348669497256201905, 5242869988601103651841105
Offset: 0

Views

Author

Joshua Zucker, Nov 25 2003

Keywords

Comments

Equivalently, lattice points where the GCD of all coordinates = 1.

Examples

			a(3) = 49 because in the 3-dimensional lattice of side length 3, the lines through the origin are determined by all 37 points with at least one coordinate = 3 and 6 permutations of (2,1,0) and 3 permutations each of (2,1,1) and (2,2,1).
		

Crossrefs

Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 are for n dimensions with side length 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 are this sequence for 2, 3, 4, 5, 6, 7 dimensions. A090030 is the table for n dimensions, side length k.

Programs

  • Maple
    a:= n-> add(numtheory[mobius](i)*((floor(n/i)+1)^n-1), i=1..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 09 2022
  • Mathematica
    aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]];lines[n_, k_] := (k + 1)^n - Sum[Floor[k/i - 1]*aux[n, i], {i, 1, Floor[k/2]}] - 1;Table[lines[k, k], {k, 0, 20}]

Formula

a(n) = A090030(n,n).

A088037 Smallest square k == 1 (mod some n-th power), k > 1.

Original entry on oeis.org

4, 9, 9, 49, 225, 961, 3969, 16129, 65025, 261121, 1046529, 4190209, 16769025, 67092481, 268402689, 1073676289, 4294836225, 17179607041, 68718952449, 274876858369, 1099509530625, 4398042316801, 17592177655809
Offset: 1

Views

Author

Amarnath Murthy, Sep 19 2003

Keywords

Comments

From a(2) onwards the n-th power that divides a(n) -1 is 2^n ===> Second term onwards same as A060867 i.e. a(n+1) = (2^n-1)^2.

Examples

			a(6) = 961 and 960 = 64*15.
		

Crossrefs

Cf. A060867.

Formula

From Colin Barker, Feb 05 2013: (Start)
a(n) = (2^n-2)^2/4 for n>2.
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>5.
G.f.: x*(2*x+1)*(32*x^3-56*x^2+27*x-4) / ((x-1)*(2*x-1)*(4*x-1)). (End)

Extensions

More terms from Ray Chandler, Oct 04 2003

A128832 Number of n-tuples where each entry is chosen from the subsets of {1,2,3,4} such that the intersection of all n entries is empty.

Original entry on oeis.org

1, 81, 2401, 50625, 923521, 15752961, 260144641, 4228250625, 68184176641, 1095222947841, 17557851463681, 281200199450625, 4501401006735361, 72040003462430721, 1152780773560811521, 18445618199572250625
Offset: 1

Views

Author

Peter C. Heinig (algorithms(AT)gmx.de), Apr 13 2007

Keywords

Comments

The general formula where each entry is chosen from the subsets of {1,...,k} is (2^n-1)^k. This may be shown by exhibiting a bijection to a set whose cardinality is obviously (2^n-1)^k, namely the set of all k-tuples with each entry chosen from the 2^n-1 proper subsets of {1,...,n}, i.e., for of the k entries {1,...,n} is forbidden. The bijection is given by (X_1,...,X_n) |-> (Y_1,...,Y_k) where for each j in {1,...,k} and each i in {1,...,n}, i is in Y_j if and only if j is in X_i. Sequence A060867 is the case where the entries are chosen from subsets of {1,2}.

Examples

			a(1) = (2^1 - 1)^4 = 1 because only one tuple of length one, namely ({}), has an empty intersection of its sole entry.
		

References

  • Stanley, R. P.: Enumerative Combinatorics: Volume 1: Wadsworth & Brooks: 1986: p. 11

Crossrefs

Cf. A000225 (2^n-1), A000583 (n^4).

Programs

  • Maple
    for k from 1 to 20 do (2^k-1)^4; od;
    with (combinat):seq(mul(stirling2(n,2),k=1..4),n=2..17); # Zerinvary Lajos, Dec 16 2007
  • Mathematica
    LinearRecurrence[{31,-310,1240,-1984,1024},{1,81,2401,50625,923521},20] (* Harvey P. Dale, Mar 30 2019 *)

Formula

a(n) = (2^n - 1)^4.
G.f.: -x*(4*x+1)*(16*x^2+46*x+1)/((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(16*x-1)). [Colin Barker, Nov 17 2012]

A128833 Number of n-tuples where each entry is chosen from the subsets of {1,2,3,4,5} such that the intersection of all n entries is empty.

Original entry on oeis.org

1, 243, 16807, 759375, 28629151, 992436543, 33038369407, 1078203909375, 34842114263551, 1120413075641343, 35940921946155007, 1151514816750309375, 36870975646169341951, 1180231376725002502143, 37773167607267111108607
Offset: 1

Views

Author

Peter C. Heinig (algorithms(AT)gmx.de), Apr 13 2007

Keywords

Comments

The general formula where each entry is chosen from the subsets of {1,..,k} is (2^n-1)^k. This may be shown by exhibiting a bijection to a set whose cardinality is obviously (2^n-1)^k, namely the set of all k-tuples with each entry chosen from the 2^n-1 proper subsets of {1,..,n}, i.e. for of the k entries {1,..,n} is forbidden. The bijection is given by (X_1,..,X_n) |-> (Y_1,..,Y_k) where for each j in {1,..,k} and each i in {1,..,n}, i is in Y_j if and only if j is in X_i. Sequence A060867 is the case where the entries are chosen from subsets of {1,2}.

Examples

			a(1)=(2^1-1)^5=1 because only one tuple of length one, namely ({}) has an empty intersection of its sole entry.
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Volume 1, Wadsworth & Brooks, 1986, p. 11.

Crossrefs

Cf. A060867.

Programs

  • Maple
    for k from 1 to 20 do (2^k-1)^5; od;
  • Mathematica
    (2^Range[20]-1)^5 (* or *) LinearRecurrence[{63,-1302,11160,-41664,64512,-32768},{1,243,16807,759375,28629151,992436543},20] (* or *) CoefficientList[Series[x (1024x^4+5760x^3+2800x^2+180x+1)/((x-1)(2x-1)(4x-1)(8x-1)(16x-1)(32x-1)),{x,0,20}],x] (* Harvey P. Dale, Aug 16 2021 *)

Formula

a(n) = (2^n-1)^5
G.f.: x*(1024*x^4+5760*x^3+2800*x^2+180*x+1)/((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(16*x-1)*(32*x-1)). [Colin Barker, Nov 17 2012]

A302761 Number of total dominating sets in the n-barbell graph.

Original entry on oeis.org

1, 4, 23, 136, 707, 3312, 14527, 61264, 252515, 1027192, 4147343, 16674984, 66887875, 267960544, 1072726271, 4292804896, 17175281987, 68709777768, 274857460111, 1099468636600, 4397956334051, 17591997301264, 70368349913663, 281474154627696, 1125898195567267
Offset: 1

Views

Author

Eric W. Weisstein, Apr 12 2018

Keywords

Crossrefs

Programs

  • Magma
    [(2^n-n)^2 - (2^n-2*n): n in [1..30]]; // Vincenzo Librandi, Apr 15 2018
  • Mathematica
    Array[(2^# - #)^2 - (2^# - 2 #) &, 30] (* Michael De Vlieger, Apr 14 2018 *)
    Table[(2^n - n)^2 - (2^n - 2*n), {n, 30}]
    LinearRecurrence[{11, -47, 101, -116, 68, -16}, {1, 4, 23, 136, 707, 3312}, 30]
    CoefficientList[Series[(1 - 7 x + 26 x^2 - 30 x^3 + 4 x^4)/((-1 + x)^3 (-1 + 2 x)^2 (-1 + 4 x)), {x, 0, 30}], x] (* Eric W. Weisstein, Apr 16 2018 *)
  • PARI
    a(n)={(2^n-n)^2 - (2^n-2*n)} \\ Andrew Howroyd, Apr 14 2018
    
  • PARI
    Vec(x*(1 - 7*x + 26*x^2 - 30*x^3 + 4*x^4) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Apr 15 2018
    

Formula

a(n) = (2^n-n)^2 - (2^n-2*n). - Andrew Howroyd, Apr 14 2018
From Colin Barker, Apr 15 2018: (Start)
G.f.: x*(1 - 7*x + 26*x^2 - 30*x^3 + 4*x^4) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)).
a(n) = 11*a(n-1) - 47*a(n-2) + 101*a(n-3) - 116*a(n-4) + 68*a(n-5) - 16*a(n-6) for n>6. (End)
E.g.f.: exp(x)*(exp(3*x) + x*(3 + x) - exp(x)*(1 + 4*x)). - Stefano Spezia, Sep 06 2023

Extensions

a(1)-a(2) and a(11)-a(25) from Andrew Howroyd, Apr 14 2018

A354741 Triangular array read by rows. T(n,k) is the number of n X n Boolean matrices with row rank k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 9, 6, 1, 49, 306, 156, 1, 225, 8550, 37488, 19272, 1, 961, 194850, 4811700, 17551800, 10995120
Offset: 0

Views

Author

Geoffrey Critzer, Jun 12 2022

Keywords

Comments

Compare to A286331 which counts n X n matrices over the field GF(2). Note that the limit when n->oo of the probability that a matrix over GF(2) has rank n is equal to Product_{i>=1} (1-1/2^i) = 0.288... (see A048651). Here, it appears (from some empirical computations) that the limiting probability that a Boolean matrix has rank n is 1.

Examples

			Table begins:
  1;
  1,   1;
  1,   9,    6;
  1,  49,  306,   156;
  1, 225, 8550, 37488, 19272;
  ...
		

Crossrefs

Columns k = 0 and 1 give A000012, A060867.
Row sums give A002416.

Programs

  • Mathematica
    Table[B = Tuples[Tuples[{0, 1}, nn],nn]; bospan[matrix_]:= Sort[DeleteDuplicates[
         Map[Clip[Total[#]] &, Drop[Subsets[matrix], 1]]]]; rowrank[matrix_] :=
       If[Total[Map[Total, matrix]] == 0, 0, Length[Select[Drop[Subsets[DeleteCases[matrix, Table[0, {nn}]]], 1],
           bospan[#] == bospan[DeleteCases[matrix, Table[0, {nn}]]] &][[ 1]]]]; Tally[
        Table[rowrank[B[[i]]], {i, 1, 2^(nn^2)}]][[All,2]], {nn, 0, 4}] // Grid

Formula

T(n,0) = 1.
T(n,1) = (2^n-1)^2.
T(n,2) = (3^n - 2*2^n + 1)^2 + (1/2)*(4^n - 2*3^n + 2^n)^2.

Extensions

Row n=5 from Pontus von Brömssen, Jul 14 2022

A384988 a(n) = Stirling2(n,2)^2 + Stirling2(n,3).

Original entry on oeis.org

0, 1, 10, 55, 250, 1051, 4270, 17095, 68050, 270451, 1075030, 4276735, 17030650, 67881451, 270777790, 1080817975, 4316294050, 17244046051, 68912400550, 275457464815, 1101251874250, 4403270396251, 17607863991310, 70415790601255, 281616141147250, 1126323450484051
Offset: 1

Views

Author

Julian Allagan, Jun 14 2025

Keywords

Comments

Also, one third of the number of proper vertex colorings of the n-complete tripartite graph using exactly 5 interchangeable colors.
The complete 3-partite graph K(n,n,n) has 3n vertices partitioned into three sets of size n each, with edges between every pair of vertices from different sets. 3*a(n) = 0 for n < 2 because we need at least 2 vertices per partition to create 5 nonempty independent sets.

Examples

			3*a(2) = 3 because K(2,2,2) can be partitioned into 5 nonempty independent sets in exactly 3 ways.
		

Crossrefs

Programs

  • Magma
    [(6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4: n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
  • Mathematica
    Table[(StirlingS2[n, 3] + StirlingS2[n, 2]^2), {n, 1, 20}]

Formula

3*a(n) = 2^(2*n - 2) + (1/2)*3^(n - 1) - 3*2^(n - 1) + 3/2 for n >= 1.
G.f.: 1/(4*(1 - 4*x)) + 1/(6*(1 - 3*x)) - 3/(2*(1 - 2*x)) + 3/(2*(1 - x)).
a(n) = A385432(n, 5) / 3 = A060867(n-1) + A000392(n).
From Stefano Spezia, Jun 14 2025: (Start)
a(n) = (6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4.
E.g.f.: (exp(x) - 1)^2*(3*exp(2*x) + 8*exp(x) - 5)/12. (End)
a(n) = A000453(n+2) -10*A000453(n). - R. J. Mathar, Jul 20 2025

A233757 Triangle read by rows: T(n,k) = (2^n-1)*2^(k-1), for n >= 1 and 1<=k<=n.

Original entry on oeis.org

1, 3, 6, 7, 14, 28, 15, 30, 60, 120, 31, 62, 124, 248, 496, 63, 126, 252, 504, 1008, 2016, 127, 254, 508, 1016, 2032, 4064, 8128, 255, 510, 1020, 2040, 4080, 8160, 16320, 32640, 511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816, 1023, 2046, 4092
Offset: 1

Views

Author

Omar E. Pol, Jan 12 2014

Keywords

Comments

Column 1 gives the positive terms of A000225.
Leading diagonal gives the positive terms of A006516.
The sum of row n is T(n,1)^2 = A000225(n)^2, hence row sums give A060867.
If n = A000043(m) then T(n,1) = A000668(m) and row n lists last n divisors of m-th even perfect number, which are also the divisors that are multiples of m-th Mersenne prime, for m >= 1.
If n = A000043(m) then T(n,n) = A000396(m), assuming there are no odd perfect numbers, for m >= 1.

Examples

			Triangle begins:
1;
3, 6;
7, 14, 28;
15, 30, 60, 120;
31, 62, 124, 248, 496;
63, 126, 252, 504, 1008, 2016;
127, 254, 508, 1016, 2032, 4064, 8128;
255, 510, 1020, 2040, 4080, 8160, 16320, 32640;
511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816;
...
		

Crossrefs

Programs

  • Mathematica
    Table[(2^n-1)2^(k-1),{n,10},{k,n}]//Flatten (* Harvey P. Dale, Oct 10 2018 *)

Formula

T(n,k) = A000225(n)*A000079(k-1), n >= 1, 1<=k<=n.

A242078 Smallest square number > 10*a(n-1) with a(1) = 1.

Original entry on oeis.org

1, 16, 169, 1764, 17689, 177241, 1774224, 17749369, 177502329, 1775105424, 17751298756, 177513070329, 1775132540281, 17751332312289, 177513333968569, 1775133399758224, 17751334196261689, 177513342503762329
Offset: 1

Views

Author

J. Lowell, May 03 2014

Keywords

Examples

			Term after 169 cannot be 1681 because 1681 is less than 10 times 169.
		

Crossrefs

Cf. other sequences with smallest square > k*a(n-1): A175627 (k=2), A060867 (k=4).

Programs

  • Magma
    nMax:=100; a:=1; for n in [1..nMax] do a:=(Isqrt(a*10)+1)^2; a; end for; // Jon E. Schoenfield, May 06 2014
  • Mathematica
    NestList[Ceiling[Sqrt[10#]]^2&,1,20] (* Harvey P. Dale, Sep 03 2020 *)
  • PARI
    lista(nn, k=10) = {a=1; for (n=1, nn, print1(a, ", "); a = (sqrtint(a*k)+1)^2;);} \\ Michel Marcus, May 06 2014
    
Previous Showing 31-40 of 48 results. Next