A379587
Array read by ascending antidiagonals: A(n, k) = (k^n - 1)^2/(k - 1), with k >= 2.
Original entry on oeis.org
0, 1, 0, 9, 2, 0, 49, 32, 3, 0, 225, 338, 75, 4, 0, 961, 3200, 1323, 144, 5, 0, 3969, 29282, 21675, 3844, 245, 6, 0, 16129, 264992, 348843, 97344, 9245, 384, 7, 0, 65025, 2389298, 5589675, 2439844, 335405, 19494, 567, 8, 0, 261121, 21516800, 89467563, 61027344, 12090125, 960000, 37303, 800, 9, 0
Offset: 0
The array begins as:
0, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 6, ...
9, 32, 75, 144, 245, 384, ...
49, 338, 1323, 3844, 9245, 19494, ...
225, 3200, 21675, 97344, 335405, 960000, ...
961, 29282, 348843, 2439844, 12090125, 47073606, ...
...
-
A[n_,k_]:=(k^n-1)^2/(k-1); Table[A[n-k+2,k],{n,0,9},{k,2,n+2}]//Flatten
A081474
Number of distinct lines through the origin in n-dimensional cube of side length n.
Original entry on oeis.org
0, 1, 5, 49, 529, 7471, 112825, 2078455, 42649281, 997784221, 25875851825, 742641202183, 23283999690561, 793616663524231, 29188521870580929, 1152885848976064513, 48659336030073207425, 2185894865613157551481, 104126348669497256201905, 5242869988601103651841105
Offset: 0
a(3) = 49 because in the 3-dimensional lattice of side length 3, the lines through the origin are determined by all 37 points with at least one coordinate = 3 and 6 permutations of (2,1,0) and 3 permutations each of (2,1,1) and (2,2,1).
Cf.
A000225,
A001047,
A060867,
A090020,
A090021,
A090022,
A090023,
A090024 are for n dimensions with side length 1, 2, 3, 4, 5, 6, 7, 8, respectively.
A049691,
A090025,
A090026,
A090027,
A090028,
A090029 are this sequence for 2, 3, 4, 5, 6, 7 dimensions.
A090030 is the table for n dimensions, side length k.
-
a:= n-> add(numtheory[mobius](i)*((floor(n/i)+1)^n-1), i=1..n):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 09 2022
-
aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]];lines[n_, k_] := (k + 1)^n - Sum[Floor[k/i - 1]*aux[n, i], {i, 1, Floor[k/2]}] - 1;Table[lines[k, k], {k, 0, 20}]
A088037
Smallest square k == 1 (mod some n-th power), k > 1.
Original entry on oeis.org
4, 9, 9, 49, 225, 961, 3969, 16129, 65025, 261121, 1046529, 4190209, 16769025, 67092481, 268402689, 1073676289, 4294836225, 17179607041, 68718952449, 274876858369, 1099509530625, 4398042316801, 17592177655809
Offset: 1
a(6) = 961 and 960 = 64*15.
A128832
Number of n-tuples where each entry is chosen from the subsets of {1,2,3,4} such that the intersection of all n entries is empty.
Original entry on oeis.org
1, 81, 2401, 50625, 923521, 15752961, 260144641, 4228250625, 68184176641, 1095222947841, 17557851463681, 281200199450625, 4501401006735361, 72040003462430721, 1152780773560811521, 18445618199572250625
Offset: 1
Peter C. Heinig (algorithms(AT)gmx.de), Apr 13 2007
a(1) = (2^1 - 1)^4 = 1 because only one tuple of length one, namely ({}), has an empty intersection of its sole entry.
- Stanley, R. P.: Enumerative Combinatorics: Volume 1: Wadsworth & Brooks: 1986: p. 11
-
for k from 1 to 20 do (2^k-1)^4; od;
with (combinat):seq(mul(stirling2(n,2),k=1..4),n=2..17); # Zerinvary Lajos, Dec 16 2007
-
LinearRecurrence[{31,-310,1240,-1984,1024},{1,81,2401,50625,923521},20] (* Harvey P. Dale, Mar 30 2019 *)
A128833
Number of n-tuples where each entry is chosen from the subsets of {1,2,3,4,5} such that the intersection of all n entries is empty.
Original entry on oeis.org
1, 243, 16807, 759375, 28629151, 992436543, 33038369407, 1078203909375, 34842114263551, 1120413075641343, 35940921946155007, 1151514816750309375, 36870975646169341951, 1180231376725002502143, 37773167607267111108607
Offset: 1
Peter C. Heinig (algorithms(AT)gmx.de), Apr 13 2007
a(1)=(2^1-1)^5=1 because only one tuple of length one, namely ({}) has an empty intersection of its sole entry.
- Richard P. Stanley, Enumerative Combinatorics, Volume 1, Wadsworth & Brooks, 1986, p. 11.
-
for k from 1 to 20 do (2^k-1)^5; od;
-
(2^Range[20]-1)^5 (* or *) LinearRecurrence[{63,-1302,11160,-41664,64512,-32768},{1,243,16807,759375,28629151,992436543},20] (* or *) CoefficientList[Series[x (1024x^4+5760x^3+2800x^2+180x+1)/((x-1)(2x-1)(4x-1)(8x-1)(16x-1)(32x-1)),{x,0,20}],x] (* Harvey P. Dale, Aug 16 2021 *)
A302761
Number of total dominating sets in the n-barbell graph.
Original entry on oeis.org
1, 4, 23, 136, 707, 3312, 14527, 61264, 252515, 1027192, 4147343, 16674984, 66887875, 267960544, 1072726271, 4292804896, 17175281987, 68709777768, 274857460111, 1099468636600, 4397956334051, 17591997301264, 70368349913663, 281474154627696, 1125898195567267
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Barbell Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (11,-47,101,-116,68,-16).
-
[(2^n-n)^2 - (2^n-2*n): n in [1..30]]; // Vincenzo Librandi, Apr 15 2018
-
Array[(2^# - #)^2 - (2^# - 2 #) &, 30] (* Michael De Vlieger, Apr 14 2018 *)
Table[(2^n - n)^2 - (2^n - 2*n), {n, 30}]
LinearRecurrence[{11, -47, 101, -116, 68, -16}, {1, 4, 23, 136, 707, 3312}, 30]
CoefficientList[Series[(1 - 7 x + 26 x^2 - 30 x^3 + 4 x^4)/((-1 + x)^3 (-1 + 2 x)^2 (-1 + 4 x)), {x, 0, 30}], x] (* Eric W. Weisstein, Apr 16 2018 *)
-
a(n)={(2^n-n)^2 - (2^n-2*n)} \\ Andrew Howroyd, Apr 14 2018
-
Vec(x*(1 - 7*x + 26*x^2 - 30*x^3 + 4*x^4) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Apr 15 2018
A354741
Triangular array read by rows. T(n,k) is the number of n X n Boolean matrices with row rank k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 9, 6, 1, 49, 306, 156, 1, 225, 8550, 37488, 19272, 1, 961, 194850, 4811700, 17551800, 10995120
Offset: 0
Table begins:
1;
1, 1;
1, 9, 6;
1, 49, 306, 156;
1, 225, 8550, 37488, 19272;
...
-
Table[B = Tuples[Tuples[{0, 1}, nn],nn]; bospan[matrix_]:= Sort[DeleteDuplicates[
Map[Clip[Total[#]] &, Drop[Subsets[matrix], 1]]]]; rowrank[matrix_] :=
If[Total[Map[Total, matrix]] == 0, 0, Length[Select[Drop[Subsets[DeleteCases[matrix, Table[0, {nn}]]], 1],
bospan[#] == bospan[DeleteCases[matrix, Table[0, {nn}]]] &][[ 1]]]]; Tally[
Table[rowrank[B[[i]]], {i, 1, 2^(nn^2)}]][[All,2]], {nn, 0, 4}] // Grid
A384988
a(n) = Stirling2(n,2)^2 + Stirling2(n,3).
Original entry on oeis.org
0, 1, 10, 55, 250, 1051, 4270, 17095, 68050, 270451, 1075030, 4276735, 17030650, 67881451, 270777790, 1080817975, 4316294050, 17244046051, 68912400550, 275457464815, 1101251874250, 4403270396251, 17607863991310, 70415790601255, 281616141147250, 1126323450484051
Offset: 1
3*a(2) = 3 because K(2,2,2) can be partitioned into 5 nonempty independent sets in exactly 3 ways.
- Vincenzo Librandi, Table of n, a(n) for n = 1..500
- Richard P. Stanley, Enumerative Combinatorics, Cambridge University Press.
- Eric Weisstein's World of Mathematics, Complete Multipartite Graph.
- Eric Weisstein's World of Mathematics, Stirling Number of the Second Kind.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
[(6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4: n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
-
Table[(StirlingS2[n, 3] + StirlingS2[n, 2]^2), {n, 1, 20}]
A233757
Triangle read by rows: T(n,k) = (2^n-1)*2^(k-1), for n >= 1 and 1<=k<=n.
Original entry on oeis.org
1, 3, 6, 7, 14, 28, 15, 30, 60, 120, 31, 62, 124, 248, 496, 63, 126, 252, 504, 1008, 2016, 127, 254, 508, 1016, 2032, 4064, 8128, 255, 510, 1020, 2040, 4080, 8160, 16320, 32640, 511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816, 1023, 2046, 4092
Offset: 1
Triangle begins:
1;
3, 6;
7, 14, 28;
15, 30, 60, 120;
31, 62, 124, 248, 496;
63, 126, 252, 504, 1008, 2016;
127, 254, 508, 1016, 2032, 4064, 8128;
255, 510, 1020, 2040, 4080, 8160, 16320, 32640;
511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816;
...
Cf.
A000043,
A000079,
A000225,
A000396,
A000668,
A006516,
A018254,
A018487,
A059268,
A060867,
A133024,
A133025,
A135652-
A135655,
A139247.
-
Table[(2^n-1)2^(k-1),{n,10},{k,n}]//Flatten (* Harvey P. Dale, Oct 10 2018 *)
A242078
Smallest square number > 10*a(n-1) with a(1) = 1.
Original entry on oeis.org
1, 16, 169, 1764, 17689, 177241, 1774224, 17749369, 177502329, 1775105424, 17751298756, 177513070329, 1775132540281, 17751332312289, 177513333968569, 1775133399758224, 17751334196261689, 177513342503762329
Offset: 1
Term after 169 cannot be 1681 because 1681 is less than 10 times 169.
Cf. other sequences with smallest square > k*a(n-1):
A175627 (k=2),
A060867 (k=4).
-
nMax:=100; a:=1; for n in [1..nMax] do a:=(Isqrt(a*10)+1)^2; a; end for; // Jon E. Schoenfield, May 06 2014
-
NestList[Ceiling[Sqrt[10#]]^2&,1,20] (* Harvey P. Dale, Sep 03 2020 *)
-
lista(nn, k=10) = {a=1; for (n=1, nn, print1(a, ", "); a = (sqrtint(a*k)+1)^2;);} \\ Michel Marcus, May 06 2014
Comments