cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A172370 Mirrored triangle A120072 read by rows.

Original entry on oeis.org

3, 5, 8, 7, 3, 15, 9, 16, 21, 24, 11, 5, 1, 2, 35, 13, 24, 33, 40, 45, 48, 15, 7, 39, 3, 55, 15, 63, 17, 32, 5, 56, 65, 8, 77, 80, 19, 9, 51, 4, 3, 21, 91, 6, 99, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 23, 11, 7, 5, 95, 1, 119, 1, 5, 35, 143, 25, 48, 69, 88, 105, 120, 133, 144
Offset: 2

Views

Author

Paul Curtz, Feb 01 2010

Keywords

Comments

A table of numerators of 1/n^2 - 1/m^2 extended to negative m looks as follows, stacked such that values of common m are aligned
and the central column of -1 is defined for m=0:
.............................0..-1...0...3...8..15..24..35..48..63..80..99. A005563
.........................0..-3..-1..-3...0...5...3..21...2..45..15..77...6. A061037
.....................0..-5..-8..-1..-8..-5...0...7..16...1..40..55...8..91. A061039
.................0..-7..-3.-15..-1.-15..-3..-7...0...9...5..33...3..65..21. A061041
.............0..-9.-16.-21.-24..-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043
.........0.-11..-5..-1..-2.-35..-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045
.....0.-13.-24.-33.-40.-45.-48..-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047
.0.-15..-7.-39..-3.-55.-15.-63..-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049
The row-reversed variant of A120072 appears (negated) after the leftmost 0.
Equals A061035 with the first column removed. - Georg Fischer, Jul 26 2023

Examples

			The table starts
   3
   5   8
   7   3  15
   9  16  21  24
  11   5   1   2  35
  13  24  33  40  45  48
  15   7  39   3  55  15  63
  17  32   5  56  65   8  77  80
  19   9  51   4   3  21  91   6  99
		

Crossrefs

Lower diagonal gives: A070262, A061037(n+2).

Programs

  • Magma
    [[Numerator(1/(n-k)^2 -1/n^2): k in [1..n-1]]: n in [2..20]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[Numerator[1/(n-k)^2 -1/n^2], {n, 2, 20}, {k, 1, n-1}]//Flatten (* G. C. Greubel, Sep 20 2018 *)
  • PARI
    for(n=2,20, for(k=1,n-1, print1(numerator(1/(n-k)^2 -1/n^2), ", "))) \\ G. C. Greubel, Sep 20 2018
    

Formula

T(n,m) = numerator of 1/(n-m)^2 - 1/n^2, n >= 2, 1 <= m < n. - R. J. Mathar, Nov 23 2010

Extensions

Comment rewritten and offset set to 2 by R. J. Mathar, Nov 23 2010

A176126 Numerator of -A127276(n)/A001788(n).

Original entry on oeis.org

-1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, 38, 89, 103, 59, 67, 151, 169, 94, 104, 229, 251, 137, 149, 323, 349, 188, 202, 433, 463, 247, 263, 559, 593, 314, 332, 701, 739, 389, 409, 859, 901, 472, 494, 1033, 1079, 563, 587, 1223, 1273, 662, 688, 1429, 1483, 769, 797, 1651, 1709, 884, 914, 1889, 1951, 1007, 1039, 2143, 2209, 1138, 1172, 2413, 2483, 1277, 1313, 2699, 2773, 1424, 1462, 3001, 3079, 1579
Offset: 0

Views

Author

Paul Curtz, Dec 07 2010

Keywords

Comments

The sequence of fractions starts -1/0, -1/1, 1/3, 2/3, 4/5, 13/15, 19/21, 13/14, 17/18, 43/45, 53/55, 32/33, 38/39, ...
The denominators are apparently A064038(n+1) = A061041(4+8*n) (i.e., specified as numerators in A061041).
The difference between denominator and numerator is A014695(n), n > 0.

Crossrefs

Programs

  • Maple
    A001788 := proc(n) n*(n+1)*2^(n-2) ; end proc:
    A127276 := proc(n) 2^n-A001788(n) ; end proc:
    A176126 := proc(n) if n = 0 then -1 else 2^n/A001788(n)-1 ; numer(-%) ; end if; end proc:
    seq(A176126(n),n=0..40) ;

Formula

Conjecture: a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9) with g.f. (x^4-x^3+3*x^2-x+1)*(x^4-x^3-2*x^2-x+1) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Dec 12 2010
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12).

A225948 a(0) = -1; for n>0, a(n) = numerator(1/4 - 4/n^2).

Original entry on oeis.org

-1, -15, -3, -7, 0, 9, 5, 33, 3, 65, 21, 105, 2, 153, 45, 209, 15, 273, 77, 345, 6, 425, 117, 513, 35, 609, 165, 713, 12, 825, 221, 945, 63, 1073, 285, 1209, 20, 1353, 357, 1505, 99, 1665, 437, 1833, 30, 2009, 525, 2193, 143
Offset: 0

Views

Author

Paul Curtz, May 21 2013

Keywords

Comments

Denominators are in A226008.
Fractions in lowest terms for n>0: -15/4, -3/4, -7/36, 0/1, 9/100, 5/36, 33/196, 3/16, 65/324, 21/100, 105/484, 2/9, 153/676, 45/196, 209/900, 15/64,...
If t(n) is the sequence with period 8: 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, ... (see A226044), then A226008(n) = 4*a(n) + t(n).

Crossrefs

Programs

  • Magma
    [-1] cat [Numerator(1/4-4/n^2): n in [1..50]]; // Bruno Berselli, May 22 2013
    
  • Mathematica
    Join[{-1}, Table[Numerator[1/4 - 4/n^2], {n, 50}]] (* Bruno Berselli, May 24 2013 *)
  • PARI
    concat([-1], vector(100, n, numerator(1/4 - 4/n^2))) \\ G. C. Greubel, Sep 19 2018

Formula

a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).
a(2n) = A061037(n), a(2n+1) = A145923(n-2) for A145923(-2)=-15, A145923(-1)=-7.
a(4n) = A142705(n) for A142705(0)=-1, a(8n) = A000466(n);
a(4n+1) = A028566(4n-3) for A028566(-3)=-15;
a(4n+2) = A078371(n-1) for A078371(-1)=-3;
a(4n+3) = A028566(4n-1) for A028566(-1)=-7.
a(n+4) = A106609(n) * A106609(n+8).
G.f.: -(1 +15*x +3*x^2 +7*x^3 -9*x^5 -5*x^6 -33*x^7 -6*x^8 -110*x^9 -30*x^10 -126*x^11 -2*x^12 -126*x^13 -30*x^14 -110*x^15 -3*x^16 -33*x^17 -5*x^18 -9*x^19 +7*x^21 +3*x^22 +15*x^23)/(1-x^8)^3. - Bruno Berselli, May 22 2013
a(n) = (n^2-16)*(6*cos(Pi*n/4)-54*cos(Pi*n/2)+6*cos(3*Pi*n/4)-219*(-1)^n+293)/512. - Bruno Berselli, May 22 2013
a(n+10) = a(n+2)*(n+14)/(n-2) for n=0,1 and n>2. - Bruno Berselli, May 22 2013

Extensions

Edited by Bruno Berselli, May 22 2013

A061044 Denominator of 1/25 - 1/n^2.

Original entry on oeis.org

1, 900, 1225, 1600, 2025, 100, 3025, 3600, 4225, 4900, 225, 6400, 7225, 8100, 9025, 80, 11025, 12100, 13225, 14400, 625, 16900, 18225, 19600, 21025, 180, 24025, 25600, 27225, 28900, 1225, 32400, 34225, 36100, 38025, 1600, 42025
Offset: 5

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Crossrefs

See A061041 for comments, references, links.
Cf. A061043 (numerator).

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a061044 = denominator . (1 % 25 -) . recip . (^ 2) . fromIntegral
    -- Reinhard Zumkeller, Jan 06 2014
  • Mathematica
    Table[Denominator[1/5^2 - 1/n^2], {n, 7, 50}] (* G. C. Greubel, Jul 07 2017 *)
  • PARI
    a(n) = denominator(1/25 - 1/n^2); \\ Michel Marcus, Aug 15 2013
    

A143025 Period length 4: repeat [1, 8, 2, 8].

Original entry on oeis.org

1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8
Offset: 0

Views

Author

Paul Curtz, Oct 13 2008

Keywords

Comments

Numerator of 1/n^2-1/(3n)^2 if n>0.
This can be generated from the transitions between principal quantum numbers n and 3n in the Hydrogen series: A005563(2), A061037(6), A061039(9), A061041(12), A061043(15), A061045(18), A061047(21), A061049(24),... (The mention of A005563(2) is somewhat a fluke to maintain the periodic pattern.)
Related to the continued fraction of (12*sqrt(55)-72)/19 = 0.89444115.. = 0+1/(1+1/(8+1/(2+...))). - R. J. Mathar, Jun 27 2011

Crossrefs

Programs

Formula

a(n+4) = a(n).
G.f.: (1+8*x+2*x^2+8*x^3)/(1-x^4).
From Wesley Ivan Hurt, Jul 10 2016: (Start)
a(n) = (19 - 13*I^(2*n) - I^(-n) - I^n)/4, where I = sqrt(-1).
a(n) = (19 - 2*cos(n*Pi/2) - 13*cos(n*Pi))/4. (End)

Extensions

Partially edited by R. J. Mathar, Dec 10 2008

A165207 Period 4: repeat [2, 2, 4, 4].

Original entry on oeis.org

2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2
Offset: 0

Views

Author

Paul Curtz, Sep 07 2009

Keywords

Comments

Continued fraction expansion of (21+5*sqrt(26))/19 = A177153. - Klaus Brockhaus, May 03 2010
A045572(n)^a(n) == 1 (mod 10). For n>1, a(n) is the smallest positive exponent with this property. - Christina Steffan, Sep 08 2015

Crossrefs

Programs

Formula

a(n) = 2*A130658(n).
a(n) = A002378(n+1)/A064038(n+2) = A061037(4n+6)/A064038(n+2) = A061037(4n+6)/A061041(8n+12).
From R. J. Mathar, Sep 11 2009: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2.
G.f.: 2*(1+2*x^2)/((1-x)*(1+x^2)). (End)
a(n) = 3-cos(Pi*n/2)-sin(Pi*n/2). - R. J. Mathar, Oct 08 2011
a(n) = 2 + (2*floor(n/2) mod 4). - Wesley Ivan Hurt, Apr 20 2015
a(n) = a(n-4) for n>3. - Wesley Ivan Hurt, Jul 09 2016

Extensions

Edited, offset set to 0, by R. J. Mathar, Sep 11 2009

A174680 Numerator of 1/16 - 1/n^2, using -1 at the pole where n=0.

Original entry on oeis.org

-1, -15, -3, -7, 0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, 209, 15, 273, 77, 345, 3, 425, 117, 513, 35, 609, 165, 713, 3, 825, 221, 945, 63, 1073, 285, 1209, 5, 1353, 357, 1505, 99, 1665, 437, 1833, 15, 2009, 525, 2193, 143, 2385, 621, 2585, 21, 2793, 725, 3009, 195, 3233, 837, 3465, 14, 3705
Offset: 0

Views

Author

Paul Curtz, Nov 30 2010

Keywords

Comments

Extends the Brackett spectrum to negative principal quantum numbers in the spirit of A144477 and A171709.

Crossrefs

Programs

  • Mathematica
    Table[(n^2 - 16)/(GCD[n^2 - 16, 16*n^2]), {n, 0, 100}] (* G. C. Greubel, Sep 16 2018 *)
  • PARI
    {a(n) = (n^2 - 16) / gcd(n^2 - 16, 16 * n^2)}; /* Michael Somos, Jan 06 2011 */

Formula

a(n) = A061041(n), n >= 4.
a(n) = A172157(4,n), n >= 1.
a(n) = a(-n) for all n in Z.

Extensions

removed a(-4)-a(-1) since a(-n)=a(n) by Michael Somos, Jan 06 2011

A171372 a(n) = Numerator of 1/(2*n)^2 - 1/(3*n)^2 for n > 0, a(0) = 1.

Original entry on oeis.org

1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5
Offset: 0

Views

Author

Paul Curtz, Dec 07 2009

Keywords

Comments

The diagonal of a table of numerators of the Rydberg-Ritz spectrum of hydrogen:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, ... A061037
0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, ... A061041
0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, ... A061045
0, 17, 9, 57, 5, 105, 33, 161, 3, 225, 65, ... A061049
0, 21, 11, 69, 6, 1, 39, 189, 14, 261, 3, ...
0, 25, 13, 1, 7, 145, 5, 217, 1, 11, 85, ...
0, 29, 15, 93, 8, 165, 51, 5, 18, 333, 95, ...
0, 33, 17, 105, 9, 185, 57, 273, 5, 369, 105, ...
0, 37, 19, 13, 10, 205, 7, 301, 22, 5, 115, ...
0, 41, 21, 129, 11, 9, 69, 329, 3, 441, 1, ...
In that respect, constructed similar to A144437.

Crossrefs

Cf. A171373 (binomial transform), A171408, A105371.

Programs

  • Magma
    [1] cat [Numerator(5/(6*n)^2): n in [1..100]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[If[n==0,1,Numerator[5/(6*n)^2]], {n,0,100}] (* G. C. Greubel, Sep 20 2018 *)
  • PARI
    concat([1], vector(100, n, numerator(5/(6*n)^2))) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = numerator of 5/(6*n)^2 .
Period 5: repeat [1,5,5,5,5].
G.f.: (1 + 5*x + 5*x^2 + 5*x^3 + 5*x^4)/((1-x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 1 + 4*sign(n mod 5). - Wesley Ivan Hurt, Sep 26 2018
a(n) = (21-8*cos(2*n*Pi/5)-8*cos(4*n*Pi/5))/5. - Wesley Ivan Hurt, Sep 27 2018

Extensions

Edited by R. J. Mathar, Dec 15 2009

A178395 Triangle T(n,m) read by rows: the numerator of the coefficient [x^m] of the inverse Euler polynomial E^{-1}(n,x), 0 <= m <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 15, 10, 15, 3, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 4, 14, 28, 35, 28, 14, 4, 1, 1, 9, 18, 42, 63, 63, 42, 18, 9, 1, 1, 5, 45, 60, 105, 126, 105, 60, 45, 5, 1, 1, 11, 55, 165, 165, 231, 231, 165, 165, 55, 11, 1, 1, 6, 33, 110, 495, 396, 462, 396, 495, 110, 33, 6, 1
Offset: 0

Views

Author

Paul Curtz, May 27 2010

Keywords

Comments

The triangle of fractions A060096(n,m)/A060097(n,m) contains the coefficients of the Euler Polynomial E(n,x) in row n. The matrix inverse of this triangle is
1;
1/2, 1;
1/2, 1, 1;
1/2, 3/2, 3/2, 1;
1/2, 2, 3, 2, 1;
1/2, 5/2, 5, 5, 5/2, 1;
and defines inverse Euler polynomials E^{-1}(n,x) assuming that row n and column m contain the coefficient [x^m] E^{-1}(n,x). The column m=0 is 1 if n=0, otherwise 1/2.
The current triangle T(n,m) shows the numerator of [x^m] E^{-1}(n,x).
Numerators of exponential Riordan array [(1+exp(x))/2,x]. Central coefficients T(2n,n) are A088218. - Paul Barry, Sep 07 2010

Examples

			From _Paul Barry_, Sep 07 2010: (Start)
Triangle begins
  1;
  1,   1;
  1,   1,   1;
  1,   3,   3,   1;
  1,   2,   3,   2,   1;
  1,   5,   5,   5,   5,   1;
  1,   3,  15,  10,  15,   3,   1;
  1,   7,  21,  35,  35,  21,   7,   1;
  1,   4,  14,  28,  35,  28,  14,   4,   1;
  1,   9,  18,  42,  63,  63,  42,  18,   9,   1;
  1,   5,  45,  60, 105, 126, 105,  60,  45,   5,   1; (End)
		

Crossrefs

Cf. A178474 (denominators).

Programs

  • Maple
    nm := 15 : eM := Matrix(nm,nm) :
    for n from 0 to nm-1 do for m from 0 to n do eM[n+1,m+1] := coeff(euler(n,x),x,m) ; end do: for m from n+1 to nm-1 do eM[n+1,m+1] := 0 ; end do: end do:
    eM := LinearAlgebra[MatrixInverse](eM) :
    for n from 1 to nm do for m from 1 to n do printf("%d,", numer(eM[n,m])) ; end do: end do: # R. J. Mathar, Dec 21 2010
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 13;
    R = RiordanArray[(1 + E^#)/2&, #&, rows, True];
    R // Flatten // Numerator (* Jean-François Alcover, Jul 20 2019 *)
  • PARI
    T(n,k)=numerator((binomial(n,k)+binomial(0,n-k))/2);
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print());

Formula

T(n,0) = 1.
T(n,m) = T(n,n-m).
T(n,1) = A026741(n).
T(n,2) = A064038(n) (numerators related to A061041).
Number triangle T(n,k) = [k<=n]*numerator((C(n,k) + C(0,n-k))/2). - Paul Barry, Sep 07 2010

A165983 Period 16: repeat 1,1,1,2,1,1,1,2,1,1,1,4,1,1,1,4.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Paul Curtz, Oct 03 2009

Keywords

Comments

The numerator of the reduced fraction A061037(n+3)/A061041(2n+6).

Crossrefs

Cf. A064038.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(( -1-x-x^2-2*x^3-x^8-x^9-x^10-4*x^11 )/((x-1)*(1+x)*(1+x^2)*(x^8+1)))); // G. C. Greubel, Sep 20 2018
  • Mathematica
    LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1}, {1, 1, 1, 2,  1, 1, 1, 2, 1, 1, 1, 4}, 50] (* G. C. Greubel, Apr 20 2016 *)
  • PARI
    x='x+O('x^50); Vec(( -1-x-x^2-2*x^3-x^8-x^9-x^10-4*x^11 )/((x-1)*(1+x)*(1+x^2)*(x^8+1))) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = a(n-4) - a(n-8) + a(n-12). - R. J. Mathar, Dec 17 2010
G.f.: ( -1 - x - x^2 - 2*x^3 - x^8 - x^9 - x^10 - 4*x^11 ) / ( (x-1)*(1+x)*(1+x^2)*(x^8+1) ). - R. J. Mathar, Dec 17 2010
a(4n) = a(4n+1) = a(4n+2) = 1. a(4n+3) = A165207(n).
Previous Showing 11-20 of 22 results. Next