cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A364970 a(n) = Sum_{k=1..n} binomial(floor(n/k)+2,3).

Original entry on oeis.org

1, 5, 12, 26, 42, 73, 102, 152, 204, 278, 345, 464, 556, 693, 835, 1021, 1175, 1422, 1613, 1907, 2173, 2496, 2773, 3228, 3569, 4015, 4445, 4998, 5434, 6120, 6617, 7331, 7965, 8717, 9391, 10392, 11096, 12031, 12909, 14059, 14921, 16219, 17166, 18489, 19711, 21072, 22201
Offset: 1

Views

Author

Seiichi Manyama, Oct 23 2023

Keywords

Crossrefs

Partial sums of A007437.

Programs

  • Mathematica
    Table[Sum[Binomial[Floor[n/k+2],3],{k,n}],{n,50}] (* Harvey P. Dale, Aug 04 2024 *)
  • PARI
    a(n) = sum(k=1, n, binomial(n\k+2, 3));
    
  • Python
    from math import isqrt
    def A364970(n): return (-(s:=isqrt(n))**2*(s+1)*(s+2)+sum((q:=n//k)*(3*k*(k+1)+(q+1)*(q+2)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 26 2023

Formula

a(n) = Sum_{k=1..n} binomial(k+1,2) * floor(n/k).
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1-x^k)^3 = 1/(1-x) * Sum_{k>=1} binomial(k+1,2) * x^k/(1-x^k).
a(n) = (A064602(n)+A024916(n))/2. - Chai Wah Wu, Oct 26 2023

A365439 a(n) = Sum_{k=1..n} binomial(floor(n/k)+4,5).

Original entry on oeis.org

1, 7, 23, 64, 135, 282, 493, 864, 1375, 2166, 3168, 4715, 6536, 9132, 12278, 16525, 21371, 27998, 35314, 44995, 55847, 69504, 84455, 103882, 124428, 150005, 177921, 212017, 247978, 292890, 339267, 395874, 455796, 526692, 600788, 691066, 782457, 891048, 1004814
Offset: 1

Views

Author

Seiichi Manyama, Oct 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, binomial(n\k+4, 5));
    
  • Python
    from math import isqrt, comb
    def A365439(n): return (-(s:=isqrt(n))**2*comb(s+4,4)+sum((q:=n//k)*(5*comb(k+3,4)+comb(q+4,4)) for k in range(1,s+1)))//5 # Chai Wah Wu, Oct 26 2023

Formula

a(n) = Sum_{k=1..n} binomial(k+3,4) * floor(n/k).
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1-x^k)^5 = 1/(1-x) * Sum_{k>=1} binomial(k+3,4) * x^k/(1-x^k).
a(n) = (A064604(n)+6*A064603(n)+11*A064602(n)+6*A024916(n))/24. - Chai Wah Wu, Oct 26 2023

A366971 a(n) = Sum_{k=3..n} binomial(k,3) * floor(n/k).

Original entry on oeis.org

0, 0, 1, 5, 15, 36, 71, 131, 216, 346, 511, 756, 1042, 1441, 1907, 2527, 3207, 4128, 5097, 6371, 7737, 9442, 11213, 13538, 15848, 18734, 21744, 25423, 29077, 33743, 38238, 43818, 49440, 56104, 62694, 70979, 78749, 88154, 97580, 108790, 119450, 132680, 145021, 159974
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A363607.

Programs

  • PARI
    a(n) = sum(k=3, n, binomial(k, 3)*(n\k));
    
  • Python
    from math import isqrt, comb
    def A366971(n): return -comb((s:=isqrt(n))+1,4)*(s+1)+sum(comb((q:=n//w)+1,4)+(q+1)*comb(w,3) for w in range(1,s+1)) # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k)^4 = 1/(1-x) * Sum_{k>=3} binomial(k,3) * x^k/(1-x^k).
a(n) = (A064603(n) - 3*A064602(n) + 2*A024916(n))/6. - Chai Wah Wu, Oct 30 2023

A248076 Partial sums of the sum of the 5th powers of the divisors of n: Sum_{i=1..n} sigma_5(i).

Original entry on oeis.org

1, 34, 278, 1335, 4461, 12513, 29321, 63146, 122439, 225597, 386649, 644557, 1015851, 1570515, 2333259, 3415660, 4835518, 6792187, 9268287, 12572469, 16673621, 21988337, 28424681, 36677981, 46446732, 58699434, 73107634, 90873690, 111384840, 136555392
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 30 2014

Keywords

Crossrefs

Cf. A001160 (sigma_5).
Cf. A024916: Partial sums of sigma(n) = A000203(n).
Cf. A064602: Partial sums of sigma_2(n) = A001157(n).
Cf. A064603: Partial sums of sigma_3(n) = A001158(n).
Cf. A064604: Partial sums of sigma_4(n) = A001159(n).

Programs

  • Magma
    [(&+[DivisorSigma(5,j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Nov 07 2018
    
  • Maple
    with(numtheory): A248076:=n->add(sigma[5](i), i=1..n): seq(A248076(n), n=1..50);
  • Mathematica
    Table[Sum[DivisorSigma[5, i], {i, n}], {n, 30}]
    Accumulate[DivisorSigma[5, Range[30]]] (* Vaclav Kotesovec, Mar 30 2018 *)
  • PARI
    lista(nn) = vector(nn, n, sum(i=1, n, sigma(i, 5))) \\ Michel Marcus, Sep 30 2014
    
  • Python
    from math import isqrt
    def A248076(n): return ((s:=isqrt(n))**3*(s+1)**2*(1-2*s*(s+1)) + sum((q:=n//k)*(12*k**5+q*(q**2*(q*(2*q+6)+5)-1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{i=1..n} sigma_5(i) = Sum_{i=1..n} A001160(i).
a(n) ~ Zeta(6) * n^6 / 6. - Vaclav Kotesovec, Sep 02 2018
a(n) ~ Pi^6 * n^6 / 5670. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} (Bernoulli(6, floor(1 + n/k)) - 1/42)/6, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^5 * floor(n/k). - Daniel Suteu, Nov 08 2018

A279847 a(n) = Sum_{k=1..n} k^2*(floor(n/k) - 1).

Original entry on oeis.org

0, 1, 2, 7, 8, 22, 23, 44, 54, 84, 85, 151, 152, 206, 241, 326, 327, 458, 459, 605, 664, 790, 791, 1065, 1091, 1265, 1356, 1622, 1623, 2023, 2024, 2365, 2496, 2790, 2865, 3480, 3481, 3847, 4026, 4636, 4637, 5373, 5374, 6000, 6341, 6875, 6876, 7982, 8032, 8787, 9086, 9952, 9953, 11137, 11284
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 20 2016

Keywords

Comments

Sum of all squares of proper divisors of all positive integers <= n.
Total volume of all rectangular prisms with dimensions (x, x, z) and integers x and y, such that x + y = n, 0 < x <= y, and z = floor(y/x). - Wesley Ivan Hurt, Dec 21 2020

Examples

			For n = 7 the proper divisors of the first seven positive integers are {0}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1} so a(7) = 0^2 + 1^2 + 1^2 + 1^2 + 2^2 + 1 ^2 + 1^2 + 2^2 + 3^2 + 1^2 = 23.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^2 (Floor[n/k] - 1), {k, 1, n}], {n, 55}]
    Table[Sum[DivisorSigma[2, k] - k^2, {k, 1, n}], {n, 55}]
  • PARI
    a(n) = sum(k=1, n, k^2*(floor(n/k)-1)) \\ Felix Fröhlich, Dec 20 2016
    
  • Python
    from math import isqrt
    def A279847(n): return (-n*(n+1)*(2*n+1)-(s:=isqrt(n))**2*(s+1)*(2*s+1) + sum((q:=n//k)*(6*k**2+q*(2*q+3)+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023

Formula

G.f.: -x*(1 + x)/(1 - x)^4 + (1/(1 - x))*Sum_{k>=1} k^2*x^k/(1 - x^k).
a(n) = A064602(n) - A000330(n).
a(n) = Sum_{k=1..n} A067558(k).
a(n) = Sum_{k=1..n} (A001157(k) - A000290(k)).
a(p^k) = a(p^k-1) + (p^(2*k) - 1)/(p^2 - 1), when p is prime.
a(n) ~ ((zeta(3) - 1)/3)*n^3.
a(n) = Sum_{k=1..floor(n/2)} k^2 * floor((n-k)/k). - Wesley Ivan Hurt, Dec 21 2020

A365409 a(n) = Sum_{k=1..n} binomial(floor(n/k)+3,4).

Original entry on oeis.org

1, 6, 17, 42, 78, 149, 234, 379, 555, 815, 1102, 1557, 2013, 2662, 3388, 4349, 5319, 6695, 8026, 9846, 11712, 14027, 16328, 19503, 22464, 26200, 30030, 34759, 39255, 45221, 50678, 57623, 64465, 72579, 80469, 90665, 99805, 111020, 122146, 135566, 147908, 163638
Offset: 1

Views

Author

Seiichi Manyama, Oct 23 2023

Keywords

Crossrefs

Partial sums of A059358.

Programs

  • PARI
    a(n) = sum(k=1, n, binomial(n\k+3, 4));
    
  • Python
    from math import isqrt, comb
    def A365409(n): return -(s:=isqrt(n))**2*comb(s+3,3)+sum((q:=n//k)*((comb(k+2,3)<<2)+comb(q+3,3)) for k in range(1,s+1))>>2 # Chai Wah Wu, Oct 26 2023

Formula

a(n) = Sum_{k=1..n} binomial(k+2,3) * floor(n/k).
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1-x^k)^4 = 1/(1-x) * Sum_{k>=1} binomial(k+2,3) * x^k/(1-x^k).
a(n) = (A064603(n)+3*A064602(n)+2*A024916(n))/6. - Chai Wah Wu, Oct 26 2023

A356038 a(n) = Sum_{k=1..n} binomial(n,k) * sigma_2(k).

Original entry on oeis.org

1, 7, 28, 95, 286, 802, 2143, 5519, 13807, 33762, 81060, 191678, 447396, 1032647, 2360593, 5351231, 12041764, 26920297, 59829006, 132262550, 290990077, 637429514, 1390811841, 3023647046, 6551547161, 14151910442, 30481920523, 65480947739, 140318385088, 299995596747
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 24 2022

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(sigma[2](i)*binomial(n,i),i=1..n), n=1..60); # Ridouane Oudra, Oct 25 2022
  • Mathematica
    Table[Sum[Binomial[n, k] * DivisorSigma[2, k], {k, 1, n}], {n, 1, 40}]
  • PARI
    a(n) = sum(k=1, n, binomial(n,k) * sigma(k, 2)); \\ Michel Marcus, Jul 24 2022

Formula

a(n) ~ zeta(3) * n^2 * 2^(n-2).
a(n) = Sum_{i=1..n} Sum_{j=1..n} (i^2)*binomial(n,i*j). - Ridouane Oudra, Oct 25 2022

A366915 a(n) = Sum_{k=1..n} (-1)^k*k^2*floor(n/k).

Original entry on oeis.org

-1, 2, -8, 11, -15, 15, -35, 48, -43, 35, -87, 103, -67, 83, -177, 162, -128, 145, -217, 277, -223, 143, -387, 443, -208, 302, -518, 432, -410, 370, -592, 771, -449, 421, -879, 850, -520, 566, -1134, 1024, -658, 842, -1008, 1310, -1056, 534, -1676, 1714, -737
Offset: 1

Views

Author

Chai Wah Wu, Oct 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[ (-1)^k*k^2*Floor[n/k],{k,n}]; Array[a,49] (* Stefano Spezia, Oct 29 2023 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^k*k^2*(n\k)); \\ Michel Marcus, Oct 29 2023
  • Python
    from math import isqrt
    def A366915(n): return (-(t:=isqrt(m:=n>>1))**2*(t+1)*((t<<1)+1)+sum((q:=m//k)*(6*k**2+q*((q<<1)+3)+1) for k in range(1,t+1))<<2)//3+((s:=isqrt(n))**2*(s+1)*((s<<1)+1)-sum((q:=n//k)*(6*k**2+q*((q<<1)+3)+1) for k in range(1,s+1)))//6
    

Formula

a(n) = 8*A064602(floor(n/2))-A064602(n).

A366970 a(n) = Sum_{k=3..n} binomial(k-1,2) * floor(n/k).

Original entry on oeis.org

0, 0, 1, 4, 10, 21, 36, 60, 89, 131, 176, 245, 311, 404, 502, 631, 751, 926, 1079, 1295, 1501, 1756, 1987, 2330, 2612, 2978, 3332, 3779, 4157, 4707, 5142, 5736, 6278, 6926, 7508, 8336, 8966, 9785, 10555, 11533, 12313, 13427, 14288, 15449, 16521, 17742, 18777, 20306
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A363610.

Programs

  • PARI
    a(n) = sum(k=3, n, binomial(k-1, 2)*(n\k));
    
  • Python
    from math import isqrt
    def A366970(n): return (-(s:=isqrt(n))*(s*(s**2-(s<<1)-1)+8)+sum(((q:=n//w)+1)*(q*(q-4)+3*(w**2-3*w+4)) for w in range(1,s+1)))//6 # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k)^3 = 1/(1-x) * Sum_{k>=3} binomial(k-1,2) * x^k/(1-x^k).
a(n) = (A064602(n)-3*A024916(n))/2 + A006218(n). - Chai Wah Wu, Oct 30 2023

A330449 Expansion of e.g.f. Sum_{k>=1} (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)^2).

Original entry on oeis.org

1, 6, 36, 282, 2460, 25506, 299796, 3921882, 56977740, 913248786, 15917884356, 299358495882, 6066180049020, 131932872768066, 3057940695635316, 75151035318996282, 1954299203147952300, 53684552455571903346, 1553161560008013680676, 47162101103528811791082
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[(Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[2, k], {k, 1, n}], {n, 1, 20}]

Formula

E.g.f.: -Sum_{k>=1} k * log(1 - (exp(x) - 1)^k).
E.g.f.: A(x) = log(B(x)), where B(x) = e.g.f. of A306046.
G.f.: Sum_{k>=1} (k - 1)! * sigma_2(k) * x^k / Product_{j=1..k} (1 - j*x), where sigma_2 = A001157.
exp(Sum_{n>=1} a(n) * log(1 + x)^n / n!) = g.f. of A000219.
a(n) = Sum_{k=1..n} Stirling2(n,k) * (k - 1)! * sigma_2(k).
a(n) ~ n! * zeta(3) * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Dec 15 2019
Previous Showing 11-20 of 32 results. Next