cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A069153 a(n) = Sum_{d|n} d*(d-1)/2.

Original entry on oeis.org

0, 1, 3, 7, 10, 19, 21, 35, 39, 56, 55, 91, 78, 113, 118, 155, 136, 208, 171, 252, 234, 287, 253, 395, 310, 404, 390, 497, 406, 614, 465, 651, 586, 698, 626, 910, 666, 875, 822, 1060, 820, 1202, 903, 1239, 1144, 1289, 1081, 1643, 1197, 1581, 1414, 1736
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Comments

Inverse Mobius transform of A000217. - R. J. Mathar, Jan 19 2009

Examples

			x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 19*x^6 + 21*x^7 + 35*x^8 + 39*x^9 + 56*x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq((1/2)*(sigma[2](n) - sigma[1](n)), n = 1..100); # Peter Bala, Jan 21 2021
  • Mathematica
    A069153[n_]:=Plus@@Binomial[Divisors[n],2];Array[A069153,100] (* Enrique Pérez Herrero, Feb 21 2012 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^2 - d) / 2)}
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 2) - sigma(f)) / 2; \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{k>0} x^(2*k)/(1-x^k)^3. - Vladeta Jovovic, Dec 17 2002
Row sums of triangle A134840. - Gary W. Adamson, Nov 12 2007
G.f. A(x) = (1/2) * x * d/dx log( B(x) ) where B() is g.f. for A052847. - Michael Somos, Feb 12 2008
G.f.: Sum_{k>0} ((k^2 - k) / 2) * x^k / (1 - x^k). - Michael Somos, Feb 12 2008
From Peter Bala, Jan 21 2021: (Start)
a(n) = (1/2)*(sigma_2(n) - sigma_1(n)) = (1/2)*(A001157(n) A000203(n)) = (1/2)*A086666.
G.f.: A(x) = (1/2)* Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3. - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/6) * n^3. (End)

A065443 Decimal expansion of Sum_{k=1..inf} 1/(2^k-1)^2.

Original entry on oeis.org

1, 1, 3, 7, 3, 3, 8, 7, 3, 6, 3, 4, 4, 1, 9, 6, 5, 9, 6, 6, 9, 6, 9, 1, 3, 3, 6, 8, 3, 0, 1, 3, 4, 7, 5, 8, 3, 8, 3, 0, 8, 4, 9, 3, 0, 9, 8, 1, 3, 8, 8, 2, 8, 8, 2, 0, 7, 0, 4, 4, 9, 3, 3, 1, 0, 4, 6, 4, 9, 3, 8, 6, 2, 5, 2, 0, 4, 0, 8, 9, 9, 8, 0, 0, 0, 5, 4, 0, 5, 0, 9, 0, 4, 2, 3, 5, 1, 3, 1, 1, 8, 4, 0, 3, 6
Offset: 1

Views

Author

N. J. A. Sloane, Nov 18 2001

Keywords

Examples

			1.1373387363441965966969133683013475838308493098...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Mathematica
    RealDigits[NSum[1/(2^k - 1)^2, {k, 1, Infinity}, PrecisionGoal -> 40, AccuracyGoal -> 40, WorkingPrecision -> 500, NSumTerms -> 50, NSumExtraTerms -> 50]][[1]] (* Peter Bertok (peter(AT)bertok.com), Dec 04 2001 *)
    RealDigits[(Log[2] QPolyGamma[0, 1, 1/2] + QPolyGamma[1, 1, 1/2])/Log[2]^2 - 1, 10, 20][[1]] (* Eric W. Weisstein, Jun 02 2025 *)
  • PARI
    { default(realprecision, 2080); x=suminf(k=1, 1/(2^k - 1)^2); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065443.txt", n, " ", d)) } \\ Harry J. Smith, Oct 19 2009

Formula

Equals Sum_{n>=1} 1/A060867(n).
From Amiram Eldar, Oct 16 2022: (Start)
Equals Sum_{k>=1} k/(2^(k+1)-1).
Equals A066766 - A065442. (End)
Equals Sum_{n >= 1} q^(n^2)*( (n - 1) + q^n - (n - 1)*q^(2*n) )/(1 - q^n)^2 evaluated at q = 1/2 (see A065608). - Peter Bala, Oct 16 2022

Extensions

More terms from Peter Bertok (peter(AT)bertok.com), Dec 04 2001

A137319 Start with the set of natural numbers. Add 1 to every 2nd term, 2 to every 3rd term, 3 to every 4th term, etc.

Original entry on oeis.org

1, 3, 5, 8, 9, 14, 13, 19, 19, 24, 21, 34, 25, 34, 35, 42, 33, 51, 37, 56, 49, 54, 45, 76, 53, 64, 63, 78, 57, 94, 61, 89, 77, 84, 79, 118, 73, 94, 91, 122, 81, 130, 85, 122, 117, 114, 93, 162, 103, 137, 119, 144, 105, 166, 123, 168, 133, 144, 117, 216, 121, 154, 161, 184
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 06 2008

Keywords

Comments

The generating function is the sum of the generating functions in A000027 and A065608. - R. J. Mathar, Apr 09 2008

Examples

			Start with the natural numbers:
   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
add 1 to every 2nd term:
   1,  3,  3,  5,  5,  7,  7,  9,  9, 11, ...
add 2 to every 3rd term:
   1,  3,  5,  5,  5,  9,  7,  9, 11, 11, ...
add 3 to every 4th term:
   1,  3,  5,  8,  5,  9,  7, 12, 11, 11, ...
add 4 to every 5th term:
   1,  3,  5,  8,  9,  9,  7, 12, 11, 15, ...
etc.
		

Crossrefs

Programs

  • Maple
    A137319 := proc(n) local a,k ; a := n ; for k from 2 to n do if n mod k = 0 then a := a+k-1 ; fi ; od: a; end: seq(A137319(n),n=1..100) ; # R. J. Mathar, Apr 09 2008
  • Mathematica
    Table[DivisorSigma[1, n] - DivisorSigma[0, n] + n, {n, 100}] (* Vincenzo Librandi, Sep 21 2015 *)
  • PARI
    a(n) = sigma(n) - numdiv(n) + n; \\ Michel Marcus, Oct 29 2022

Formula

a(n) = n + A065608(n). - R. J. Mathar, Apr 09 2008
a(n) = Sum_{k=1..n} k^(1-ceiling(n/k)+floor(n/k)). - Wesley Ivan Hurt, May 24 2021

Extensions

Corrected and extended by R. J. Mathar, Apr 09 2008
Edited by Jon E. Schoenfield, Sep 21 2015

A325940 Expansion of Sum_{k>=1} x^(2*k) / (1 + x^k)^2.

Original entry on oeis.org

0, 1, -2, 4, -4, 4, -6, 11, -10, 6, -10, 18, -12, 8, -20, 26, -16, 13, -18, 28, -28, 12, -22, 48, -28, 14, -36, 38, -28, 24, -30, 57, -44, 18, -44, 62, -36, 20, -52, 74, -40, 32, -42, 58, -72, 24, -46, 110, -54, 31, -68, 68, -52, 40, -68, 100, -76, 30, -58, 116
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 09 2019

Keywords

Crossrefs

Programs

  • Magma
    A325940:= func< n | (&+[0^(n mod j)*(-1)^j*(j-1): j in [1..n]]) >;
    [A325940(n): n in [1..70]]; // G. C. Greubel, Jun 22 2024
    
  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(2 k)/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[(-1)^d (d - 1), {d, Divisors[n]}], {n, 1, 60}]
  • PARI
    {a(n) = sumdiv(n, d, (-1)^d*(d-1))} \\ Seiichi Manyama, Sep 14 2019
    
  • SageMath
    def A325940(n): return sum(0^(n%j)*(-1)^j*(j-1) for j in range(1, n+1))
    [A325940(n) for n in range(1,71)] # G. C. Greubel, Jun 22 2024

Formula

G.f.: Sum_{k>=2} (-1)^k * (k - 1) * x^k / (1 - x^k).
a(n) = Sum_{d|n} (-1)^d * (d - 1).
a(n) = A048272(n) - A002129(n).
Faster converging series: A(q) = Sum_{n >= 1} (-1)^n*q^(n^2)*((n-1)*q^(3*n) + n*q^(2*n) + (n-2)*q^n + n-1)/((1 + q^n)*(1 - q^(2*n))) - apply the operator t*d/dt to equation 1 in Arndt, then set t = -q and x = q. - Peter Bala, Jan 22 2021
a(n) = A128315(n, 2). - G. C. Greubel, Jun 22 2024

A363604 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^4.

Original entry on oeis.org

0, 1, 4, 11, 20, 40, 56, 95, 124, 186, 220, 336, 364, 512, 584, 775, 816, 1129, 1140, 1526, 1600, 1992, 2024, 2720, 2620, 3290, 3400, 4176, 4060, 5280, 4960, 6231, 6208, 7362, 7216, 9195, 8436, 10280, 10248, 12270, 11480, 14432, 13244, 16192, 15884, 18240
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (DivisorSigma[3, n] - DivisorSigma[1, n])/6; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^4)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 3) - sigma(f))/6; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = (sigma_3(n) - sigma(n))/6 = A092348(n)/6.
G.f.: Sum_{k>0} binomial(k+1,3) * x^k/(1 - x^k).
From Amiram Eldar, Dec 30 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-3) - zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A059820 Expansion of series related to Liouville's Last Theorem: g.f. Sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^3 *Product_{i=1..t} (1-x^i) ).

Original entry on oeis.org

0, 1, 4, 9, 19, 30, 52, 70, 107, 136, 191, 226, 314, 352, 463, 523, 664, 717, 919, 964, 1205, 1282, 1546, 1603, 1992, 2009, 2414, 2504, 2958, 2974, 3606, 3553, 4223, 4273, 4936, 4912, 5885, 5685, 6634, 6654, 7664, 7454, 8822, 8454, 9845
Offset: 0

Views

Author

N. J. A. Sloane, Feb 24 2001

Keywords

Crossrefs

Cf. A000005 (k=1), A059819 (k=2), A059820 (k=3), A059821(k=4), A059822 (k=5), A059823 (k=6), A059824 (k=7), A059825 (k=8).
Cf. A000203, A001157, A055507, A191829 (Andrews's D_{0,0,0}(n)), A191831 (Andrews's D_{0,1}(n)).

Programs

  • Maple
    Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=3
  • PARI
    D(x, y, n) = sum(k=1, n-1, sigma(k, x)*sigma(n-k, y));
    D000(n) = sum(k=1, n-1, sigma(k, 0)*D(0, 0, n-k));
    a(n) = if(n==0, 0, (3*D(0, 0, n)+3*D(0, 1, n)+D000(n)+2*sigma(n, 0)+3*sigma(n)+sigma(n, 2))/6); \\ Seiichi Manyama, Jul 26 2024

Formula

a(n) = ( 3*A055507(n-1) + 3*A191831(n) + A191829(n) + 2*sigma_0(n) + 3*sigma(n) + sigma_2(n) )/6. - Seiichi Manyama, Jul 26 2024

A342532 Number of even-length compositions of n with alternating parts distinct.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 9, 14, 28, 44, 83, 136, 250, 424, 757, 1310, 2313, 4018, 7081, 12314, 21650, 37786, 66264, 115802, 202950, 354858, 621525, 1087252, 1903668, 3330882, 5831192, 10204250, 17862232, 31260222, 54716913, 95762576, 167614445, 293356422, 513456686
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2021

Keywords

Comments

These are finite even-length sequences q of positive integers summing to n such that q(i) != q(i+2) for all possible i.

Examples

			The a(2) = 1 through a(7) = 14 compositions:
  (1,1)  (1,2)  (1,3)  (1,4)  (1,5)      (1,6)
         (2,1)  (2,2)  (2,3)  (2,4)      (2,5)
                (3,1)  (3,2)  (3,3)      (3,4)
                       (4,1)  (4,2)      (4,3)
                              (5,1)      (5,2)
                              (1,1,2,2)  (6,1)
                              (1,2,2,1)  (1,1,2,3)
                              (2,1,1,2)  (1,1,3,2)
                              (2,2,1,1)  (1,2,3,1)
                                         (1,3,2,1)
                                         (2,1,1,3)
                                         (2,3,1,1)
                                         (3,1,1,2)
                                         (3,2,1,1)
		

Crossrefs

The strictly decreasing version appears to be A064428 (odd-length: A001522).
The equal version is A065608 (A342527 with odds).
The weakly decreasing version is A114921 (A342528 with odds).
Including odds gives A224958.
A000726 counts partitions with alternating parts unequal.
A325545 counts compositions with distinct first differences.
A342529 counts compositions with distinct first quotients.

Programs

  • Mathematica
    qdq[q_]:=And@@Table[q[[i]]!=q[[i+2]],{i,Length[q]-2}];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],EvenQ[Length[#]]&],qdq]],{n,0,15}]
  • PARI
    \\ here gf gives A106351 as g.f.
    gf(n, y)={1/(1 - sum(k=1, n, (-1)^(k+1)*x^k*y^k/(1-x^k) + O(x*x^n)))}
    seq(n)={my(p=gf(n,y)); Vec(sum(k=0, n\2, polcoef(p,k,y)^2))} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: 1 + Sum_{k>=1} B_k(x)^2 where B_k(x) is the g.f. of column k of A106351. - Andrew Howroyd, Apr 16 2021

Extensions

Terms a(24) and beyond from Andrew Howroyd, Apr 16 2021

A363605 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^5.

Original entry on oeis.org

0, 1, 5, 16, 35, 76, 126, 226, 335, 531, 715, 1092, 1365, 1947, 2420, 3286, 3876, 5251, 5985, 7861, 8986, 11342, 12650, 16252, 17585, 21841, 24086, 29367, 31465, 38946, 40920, 49662, 53080, 62782, 66206, 80082, 82251, 97376, 102640, 120001, 123410, 146628
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 2, 4] &]; Array[a, 40] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^5)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 2*sigma(f, 3) - sigma(f, 2) - 2*sigma(f)) / 24; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k+2,4) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+2,4).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_4(n) + 2*sigma_3(n) - sigma_2(n) - 2*sigma_1(n)) / 24.
Dirichlet g.f.: zeta(s) * (zeta(s-4) + 2*zeta(s-3) - zeta(s-2) - 2*zeta(s-1)) / 24.
Sum_{k=1..n} a(k) ~ (zeta(5)/120) * n^5. (End)

A363606 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^6.

Original entry on oeis.org

0, 1, 6, 22, 56, 133, 252, 484, 798, 1344, 2002, 3157, 4368, 6441, 8630, 12112, 15504, 21274, 26334, 35014, 42762, 55133, 65780, 84349, 98336, 123124, 143304, 176373, 201376, 247380, 278256, 336744, 379000, 451402, 502250, 600055, 658008, 775733, 855042
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 3, 5] &]; Array[a, 40] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^6)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 5) + 5*sigma(f, 4) + 5*sigma(f, 3) - 5*sigma(f, 2) - 6*sigma(f)) / 120; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k+3,5) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+3,5).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_5(n) + 5*sigma_4(n) + 5*sigma_3(n) - 5*sigma_2(n) - 6*sigma_1(n)) / 120.
Dirichlet g.f.: zeta(s) * (zeta(s-5) + 5*zeta(s-4) + 5*zeta(s-3) - 5*zeta(s-2) - 6*zeta(s-1)) / 120.
Sum_{k=1..n} a(k) ~ (zeta(6)/720) * n^6. (End)

A363610 Expansion of Sum_{k>0} x^(3*k)/(1-x^k)^3.

Original entry on oeis.org

0, 0, 1, 3, 6, 11, 15, 24, 29, 42, 45, 69, 66, 93, 98, 129, 120, 175, 153, 216, 206, 255, 231, 343, 282, 366, 354, 447, 378, 550, 435, 594, 542, 648, 582, 828, 630, 819, 770, 978, 780, 1114, 861, 1161, 1072, 1221, 1035, 1529, 1143, 1494, 1346, 1644, 1326, 1878, 1482, 1953
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# - 1, 2] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^k)^3)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 2) - 3*sigma(f) + 2*numdiv(f)) / 2; \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{k>0} binomial(k-1,2) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d-1,2).
From Amiram Eldar, Jan 01 2025: (Start)
a(n) = (sigma_2(n) - 3*sigma_1(n) + 2*sigma_0(n)) / 2.
Dirichlet g.f.: zeta(s) * (zeta(s-2) - 3*zeta(s-1) + 2*zeta(s)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/6) * n^3. (End)
Previous Showing 11-20 of 41 results. Next