cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 59 results. Next

A350072 a(n) = sigma(n^2) / gcd(sigma(n^2), A003961(n^2)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 7, 13, 31, 31, 91, 57, 127, 121, 31, 133, 403, 183, 133, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 427, 1093, 589, 871, 403, 993, 2047, 133, 2149, 1767, 3751, 1407, 889, 2379, 3937, 1723, 1729, 1893, 4123, 3751, 3871, 2257, 6643, 2801, 781, 3991, 1891, 2863, 7651, 589, 2413, 4953, 6097, 3541, 12493
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2021

Keywords

Comments

Conjecture: There are no 1's after the initial term. Remark: If there were some k = x^2 > 1, for which a(x) = 1, then sigma(k) would be a divisor of A003961(k). In other words, d = A350073(k) = A064989(sigma(k)) would be a divisor of k. Then, if that divisor were also a unitary divisor [with gcd(d,k/d) = 1], it would need to satisfy the equation sigma(k) = sigma(d) * sigma(k/d) = sigma(A064989(sigma(k))) * sigma(k/A064989(sigma(k))), because sigma is a multiplicative function. (Minor correction by Antti Karttunen, Jul 11 2023)
Note that if d = A064989(sigma(k)) were a unitary divisor of a square k, then sigma(k) would also be a square, the cases which are quite rare (see A008848 and A336547). Also compare to A349756. - Antti Karttunen, Jul 24 2022

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^(2*e); a[1] = 1; a[n_] := (s = Times @@ f1 @@@ (f = FactorInteger[n])) / GCD[s, Times @@ f2 @@@ f]; Array[a, 60] (* Amiram Eldar, Dec 12 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };
    A350072(n) = A349162(n^2);

Formula

a(n) = A349162(n^2).
a(n) = A065764(n) / A350071(n).

A065827 Sum of squares of divisors of square numbers.

Original entry on oeis.org

1, 21, 91, 341, 651, 1911, 2451, 5461, 7381, 13671, 14763, 31031, 28731, 51471, 59241, 87381, 83811, 155001, 130683, 221991, 223041, 310023, 280371, 496951, 406901, 603351, 597871, 835791, 708123, 1244061, 924483, 1398101, 1343433, 1760031, 1595601, 2516921
Offset: 1

Views

Author

Vladeta Jovovic, Dec 06 2001

Keywords

Crossrefs

Programs

  • Maple
    A065827 := proc(n) numtheory[sigma][2](n^2) ; end proc:
    seq(A065827(n),n=1..20) ; # R. J. Mathar, Apr 01 2011
  • Mathematica
    DivisorSigma[2,#]&/@(Range[40]^2) (* Harvey P. Dale, May 18 2011 *)
    f[p_, e_] := (p^(4*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 35] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    { for (n=1, 500, a=sigma(n^2, 2); write("b065827.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 01 2009
  • Sage
    [sigma(n^2,2)for n in range(1,34)] # Zerinvary Lajos, Jun 13 2009
    

Formula

Multiplicative with a(p^e) = (p^(4*e+2)-1)/(p^2-1).
a(n) = A001157(n^2). - R. J. Mathar, Mar 31 2011
Dirichlet g.f. zeta(s)*zeta(s-2)*zeta(s-4)/zeta(2s-4). Dirichlet convolution of A001159 by the arithmetic function with terms n^2*A008966(n). - R. J. Mathar, Mar 31 2011
Sum_{k=1..n} a(k) ~ 189 * Zeta(3) * Zeta(5) * n^5 / Pi^6. - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = 1.06464520174524878494847955427968776606386158167258511428260450690334042955... - Vaclav Kotesovec, Sep 20 2020

A202994 a(n) = sigma(n^4).

Original entry on oeis.org

1, 31, 121, 511, 781, 3751, 2801, 8191, 9841, 24211, 16105, 61831, 30941, 86831, 94501, 131071, 88741, 305071, 137561, 399091, 338921, 499255, 292561, 991111, 488281, 959171, 797161, 1431311, 732541, 2929531, 954305, 2097151, 1948705, 2750971, 2187581
Offset: 1

Views

Author

Paul D. Hanna, Dec 27 2011

Keywords

Comments

Here sigma(n^4) denotes the sums of divisors of n^4.

Examples

			L.g.f.: L(x) = x + 31*x^2/2 + 121*x^3/3 + 511*x^4/4 + 781*x^5/5 + 3751*x^6/6 +...
where exp(L(x)) = 1 + x + 16*x^2 + 56*x^3 + 296*x^4 + 1052*x^5 + 4952*x^6 +...+ A202993(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1,Range[40]^4] (* Harvey P. Dale, Jan 29 2012 *)
    f[p_, e_] := (p^(4*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    {a(n)=sigma(n^4)}
    
  • Python
    from math import prod
    from sympy import factorint
    def A202994(n): return prod((p**((e<<2)+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023

Formula

a(11*n) == 0 (mod 5) iff gcd(n,11) = 1.
Logarithmic derivative of A202993.
Multiplicative with a(p^e) = (p^(4*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A000203(A000583(n)). - Michel Marcus, Sep 10 2020
Sum_{k>=1} 1/a(k) = 1.04483665108279017775482622699860068916340892303889072390102812885655694752... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.3840585791... . - Amiram Eldar, Nov 05 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A263317 Least prime p > n such that the numbers sigma(k^2)/k^2 (k = 1,...,n) are pairwise incongruent modulo p, where sigma(m) is the sum of the divisors of m.

Original entry on oeis.org

2, 5, 5, 7, 7, 29, 37, 37, 37, 37, 37, 43, 43, 43, 53, 79, 101, 101, 101, 101, 101, 101, 101, 101, 131, 131, 131, 131, 131, 131, 131, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 283, 317, 389, 389, 389, 389, 389, 389, 389, 389, 389
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0, and a(n) < n^2 for all n > 2.
This implies that all the rational numbers sigma(n^2)/n^2 = Sum_{d|n^2} 1/d (n = 1,2,3,...) are pairwise distinct. We have verified that the numbers sigma(n^2)/n^2 (n = 1..10^5) are indeed pairwise distinct, and noted that sigma(26334^2)/26334^2 - sigma(6^2)/6^2 = 127/36 - 91/36 = 1.
We guess that for each k = 2,3,... all the numbers sigma(n^k)/n^k = Sum_{d|n^k} 1/d (n = 1,2,3,...) are pairwise distinct. See also A001157 for a similar conjecture.

Examples

			a(1) = 2 since 2 is the least prime greater than sigma(1^2)/1^2 = 1.
a(2) = 5 since sigma(1^2)/1^2 = 1 and sigma(2^2)/2^2 = 7/4 are incongruent modulo the prime 5 > 2, but 1 is congruent to 7/4 modulo the prime 3.
		

Crossrefs

Programs

  • Mathematica
    rMod[m_,n_]:=rMod[m,n]=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2]
    f[n_]:=f[n]=DivisorSigma[1,n^2]/n^2
    Le[n_,m_]:=Le[m,n]=Length[Union[Table[rMod[f[k],Prime[m]],{k,1,n}]]]
    Do[n=1;m=1;Label[aa];If[m>PrimePi[n]&&Le[n,m]==n,Goto[bb],m=m+1;Goto[aa]];Label[bb];Print[n," ",Prime[m]];If[n<60,n=n+1;Goto[aa]]]

Extensions

Definition corrected by Omar E. Pol, Oct 24 2015

A346865 Sum of divisors of the n-th hexagonal number.

Original entry on oeis.org

1, 12, 24, 56, 78, 144, 112, 360, 234, 360, 384, 672, 434, 960, 720, 992, 864, 1872, 760, 2352, 1344, 1584, 1872, 2880, 1767, 3024, 2160, 4032, 2400, 4320, 1984, 6552, 4032, 3672, 4608, 6552, 2812, 7440, 5376, 7200, 5082, 8064, 4752, 10080, 7020, 8064, 6144
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the smallest Dyck path has a valley and the largest Dyck path has a peak.
So knowing this characteristic shape we can know if a number is an hexagonal number (or not) just by looking at the diagram, even ignoring the concept of hexagonal number.
Therefore we can see a geometric pattern of the distribution of the hexagonal numbers in the stepped pyramid described in A245092.

Examples

			a(3) = 24 because the sum of divisors of the third hexagonal number (i.e., 15) is 1 + 3 + 5 + 15 = 24.
On the other hand we can see that in the main diagonal of every diagram the smallest Dyck path has a valley and the largest Dyck path has a peak as shown below.
Illustration of initial terms:
-------------------------------------------------------------------------
  n  H(n)  a(n)  Diagram
-------------------------------------------------------------------------
                 _         _                 _                         _
  1    1    1   |_|       | |               | |                       | |
                          | |               | |                       | |
                       _ _| |               | |                       | |
                      |    _|               | |                       | |
                 _ _ _|  _|                 | |                       | |
  2    6   12   |_ _ _ _|                   | |                       | |
                                            | |                       | |
                                       _ _ _|_|                       | |
                                   _ _| |                             | |
                                  |    _|                             | |
                                 _|  _|                               | |
                                |_ _|                                 | |
                                |                                     | |
                 _ _ _ _ _ _ _ _|                            _ _ _ _ _| |
  3   15   24   |_ _ _ _ _ _ _ _|                           |  _ _ _ _ _|
                                                            | |
                                                         _ _| |
                                                     _ _|  _ _|
                                                    |    _|
                                                   _|  _|
                                                  |  _|
                                             _ _ _| |
                                            |  _ _ _|
                                            | |
                                            | |
                                            | |
                 _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  4   28   56   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Column H gives the nonzero hexagonal numbers (A000384).
a(n) is also the area (and the number of cells) of the n-th diagram.
For n = 3 the sum of the regions (or parts) of the third diagram is 8 + 8 + 8 = 24, so a(3) = 24.
For more information see A237593.
		

Crossrefs

Bisection of A074285.
Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346866 (of second hexagonal numbers), A346867 (of numbers with middle divisors), A346868 (of numbers with no middle divisors).

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n*(2*n - 1)]; Array[a, 50] (* Amiram Eldar, Aug 18 2021 *)
  • PARI
    a(n) = sigma(n*(2*n-1)); \\ Michel Marcus, Aug 18 2021
    
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(n*(2*n - 1)))
    print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Aug 20 2021

Formula

a(n) = A000203(A000384(n)).
Sum_{k=1..n} a(k) ~ 4*n^3/3. - Vaclav Kotesovec, Aug 18 2021

A346866 Sum of divisors of the n-th second hexagonal number.

Original entry on oeis.org

4, 18, 32, 91, 72, 168, 192, 270, 260, 576, 288, 868, 560, 720, 768, 1488, 864, 1482, 1120, 1764, 1408, 2808, 1152, 3420, 2232, 2268, 2880, 4480, 1800, 4464, 3328, 5292, 3264, 5184, 3456, 6734, 4712, 5760, 4480, 10890, 3528, 10368, 5280, 7560, 8736, 9216, 5760, 12152
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the smallest Dyck path has a peak and the largest Dyck path has a valley.
So knowing this characteristic shape we can know if a number is a second hexagonal number (or not) just by looking at the diagram, even ignoring the concept of second hexagonal number.
Therefore we can see a geometric pattern of the distribution of the second hexagonal numbers in the stepped pyramid described in A245092.

Examples

			a(3) = 32 because the sum of divisors of the third second hexagonal number (i.e., 21) is 1 + 3 + 7 + 21 = 32.
On the other hand we can see that in the main diagonal of every diagram the smallest Dyck path has a peak and the largest Dyck path has a valley as shown below.
Illustration of initial terms:
---------------------------------------------------------------------------------------
  n  h(n)  a(n)  Diagram
---------------------------------------------------------------------------------------
                    _             _                     _                            _
                   | |           | |                   | |                          | |
                _ _|_|           | |                   | |                          | |
  1    3    4  |_ _|             | |                   | |                          | |
                                 | |                   | |                          | |
                              _ _| |                   | |                          | |
                             |  _ _|                   | |                          | |
                          _ _|_|                       | |                          | |
                         |  _|                         | |                          | |
                _ _ _ _ _| |                           | |                          | |
  2   10   18  |_ _ _ _ _ _|                           | |                          | |
                                                _ _ _ _|_|                          | |
                                               | |                                  | |
                                              _| |                                  | |
                                             |  _|                                  | |
                                          _ _|_|                                    | |
                                      _ _|  _|                                      | |
                                     |_ _ _|                                        | |
                                     |                                 _ _ _ _ _ _ _| |
                                     |                                |    _ _ _ _ _ _|
                _ _ _ _ _ _ _ _ _ _ _|                                |   |
  3   21   32  |_ _ _ _ _ _ _ _ _ _ _|                             _ _|   |
                                                                  |       |
                                                                 _|    _ _|
                                                                |     |
                                                             _ _|    _|
                                                         _ _|      _|
                                                        |        _|
                                                   _ _ _|    _ _|
                                                  |         |
                                                  |  _ _ _ _|
                                                  | |
                                                  | |
                                                  | |
                                                  | |
               _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  4   36   91 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Column h gives the n-th second hexagonal number (A014105).
The widths of the main diagonal of the diagrams are [0, 0, 0, 1] respectively.
a(n) is the area (and the number of cells) of the n-th diagram.
For n = 3 the sum of the regions (or parts) of the third diagram is 11 + 5 + 5 + 11 = 32, so a(3) = 32.
For n = 4 there is only one region (or part) of size 91 in the fourth diagram so a(4) = 91.
		

Crossrefs

Bisection of A074285.
Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346867 (of numbers with middle divisors), A346868 (of numbers with no middle divisors), A347155 (of nontriangular numbers).

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n*(2*n + 1)]; Array[a, 50] (* Amiram Eldar, Aug 18 2021 *)
  • PARI
    a(n) = sigma(n*(2*n + 1)); \\ Michel Marcus, Aug 18 2021

Formula

a(n) = A000203(A014105(n)).
Sum_{k=1..n} a(k) ~ 4*n^3/3. - Amiram Eldar, Dec 31 2024

A074216 Squares satisfying sigma(n)==0 (mod 3).

Original entry on oeis.org

49, 169, 196, 361, 441, 676, 784, 961, 1225, 1369, 1444, 1521, 1764, 1849, 2704, 3136, 3249, 3721, 3844, 3969, 4225, 4489, 4900, 5329, 5476, 5776, 5929, 6084, 6241, 7056, 7396, 8281, 8649, 9025, 9409, 10609, 10816, 11025, 11881, 12321, 12544
Offset: 1

Views

Author

Benoit Cloitre, Sep 17 2002

Keywords

Comments

Seems to contain all numbers of form k^2*p^2 where p are primes in A002476, k is not congruent to p and >=1.
Squares in A067051. - Michel Marcus, Dec 26 2013

Crossrefs

Programs

  • Magma
    [n: n in [1..14161]|IsSquare(n) and DivisorSigma(1,n) mod 3 eq 0 ]; // Marius A. Burtea, Aug 17 2019
  • Maple
    with(numtheory); A074216:=n->`if`(1-ceil(sigma(n^2)/3)+floor(sigma(n^2)/3)=1,n^2,NULL); seq(A074216(n), n=1..200); # Wesley Ivan Hurt, Dec 06 2013
  • Mathematica
    Select[Range[150]^2,Divisible[DivisorSigma[1,#],3]&] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    isok(n) = issquare(n) && !(sigma(n) % 3); \\ Michel Marcus, Aug 17 2019
    

Formula

Conjecture: a(n) = A072864(n)^2. - R. J. Mathar, May 19 2020

A074964 Numbers k such that Max ( sigma(x*y) : 1 <= x <= k, 1 <= y <= k ) = sigma(k^2).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 18, 24, 60
Offset: 1

Views

Author

Benoit Cloitre, Oct 05 2002

Keywords

Comments

Sequence is probably finite.
The next term in the sequence, if it exists, is larger than 40000. - Stewart Gordon, Sep 27 2011
Conjecture: subsequence of A066522, implying finiteness. - Reinhard Zumkeller, Nov 14 2011

Crossrefs

Programs

  • Haskell
    a074964 n = a074964_list !! (n-1)
    a074964_list = filter (\x -> a074963 x == a065764 x) [1..]
    -- Reinhard Zumkeller, Nov 14 2011
    
  • Maple
    with(numtheory): s := proc(n) option remember: return sigma(n): end: a:= proc(n) option remember: if(n=0)then return 0: fi: return max(a(n-1),seq(s(x*n),x=1..n)): end: for n from 1 to 100 do if(a(n)=s(n^2))then printf("%d, ", n): end: od: # Nathaniel Johnston, Sep 26 2011
  • PARI
    isok(k) = vecmax(setbinop((x,y)->sigma(x*y), [1..k])) == sigma(k^2); \\ Michel Marcus, Feb 03 2022

Formula

A074963(a(n)) = A065764(a(n)). - Reinhard Zumkeller, Nov 14 2011

A081325 a(n) = sigma(n^2) modulo 4.

Original entry on oeis.org

1, 3, 1, 3, 3, 3, 1, 3, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 1, 3, 1, 3, 3, 1, 3, 3, 3, 3, 1, 1, 1, 1, 3, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 1, 1, 3
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[DivisorSigma[1, n^2], 4]; Array[a, 100] (* Amiram Eldar, May 03 2025 *)
  • PARI
    a(n) = sigma(n^2) % 4; \\ Amiram Eldar, May 03 2025

Formula

From Amiram Eldar, May 03 2025: (Start)
a(n) = A010873(A065764(n)).
a(A081339(n)) = 1.
a(A081354(n)) = 3. (End)

A203556 a(n) = sigma(n^5).

Original entry on oeis.org

1, 63, 364, 2047, 3906, 22932, 19608, 65535, 88573, 246078, 177156, 745108, 402234, 1235304, 1421784, 2097151, 1508598, 5580099, 2613660, 7995582, 7137312, 11160828, 6728904, 23854740, 12207031, 25340742, 21523360, 40137576, 21243690, 89572392, 29583456, 67108863
Offset: 1

Views

Author

Paul D. Hanna, Jan 03 2012

Keywords

Comments

a(n) modulo 6 begins: [1,3,4,1,0,0,0,3,1,0,0,4,0,0,0,1,0,3,0,0,0,0,0,0,1,0,...], in which positions of nonzero residues seem related to squares.

Examples

			L.g.f.: L(x) = x + 63/2*x^2 + 364/3*x^3 + 2047/4*x^4 + 3906/5*x^5 +...
where the g.f. of A203557 begins:
exp(L(x)) = 1 + x + 32*x^2 + 153*x^3 + 1145*x^4 + 5677*x^5 + 37641*x^6 +...
		

Crossrefs

Cf. A203557 (exp), A000203 (sigma), A000584, A013664.
Variants: A065764, A175926, A202994.

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 09 2020 *)
    DivisorSigma[1,Range[40]^5] (* Harvey P. Dale, Dec 05 2021 *)
  • PARI
    a(n) = sigma(n^5)

Formula

Logarithmic derivative of A203557.
Multiplicative with a(p^e) = (p^(5*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
From Amiram Eldar, Nov 05 2022: (Start)
a(n) = A000203(A000584(n)) = A000203(n^5).
Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)/6) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3220880186... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018
Previous Showing 11-20 of 59 results. Next