cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 64 results. Next

A108110 Numbers n such that prime(k)*n+prime(k+1), for k=1,...,6 all are primes.

Original entry on oeis.org

284, 3074, 3494, 21698, 32138, 43874, 51794, 60674, 75494, 407348, 437438, 459794, 571478, 660878, 667358, 705464, 716624, 740774, 811028, 820154, 910664, 1059398, 1077998, 1122584, 1150748, 1210754, 1222898, 1265018, 1412174, 1461164, 1486574, 1585868, 1631438
Offset: 1

Views

Author

Zak Seidov, Jun 03 2005

Keywords

Comments

n == 0 (mod 2). n == 2 (mod 3). n == 3 or 4 (mod 5). - Jason Yuen, Sep 02 2024

Examples

			284 is OK because 2*284+3, 3*284+5, 5*284+7, 7*284+11, 11*284+13 and 13*284+17 all are primes.
		

Crossrefs

Cf. A067076 (k=1), A088879 (k=2), A111224 (k=3), A101123 (k=4), A102721 (k=5).
Cf. A108117 (k=1..7), A379427 (k=1..8).

Programs

  • Mathematica
    s={};Do[If[Union[PrimeQ/@Table[Prime[k]*n+Prime[k+1], {k, 6}]]=={True}, s=Append[s, n]], {n, 2, 1000000, 2}];s
  • PARI
    \\ See isok from A108117
    for(n=1,2*10^6,if(isok(n,6),print1(n", "))) \\ Jason Yuen, Sep 02 2024

Extensions

a(22)-a(33) from Jason Yuen, Sep 02 2024

A108117 Numbers n such that prime(k)*n+prime(k+1), for k=1,...,7 all are primes.

Original entry on oeis.org

3494, 60674, 75494, 1122584, 2136044, 2473934, 3367244, 5600384, 6629804, 6910784, 7554644, 8572904, 10079144, 11848094, 11892164, 12043214, 12167594, 12269234, 12507284, 12700154, 13459664, 13924544, 14495354, 15005954, 16890914, 17827094, 20642984, 25796054
Offset: 1

Views

Author

Zak Seidov, Jun 03 2005

Keywords

Comments

The only n, for which also 19*3494+23 is prime, is n=5600384. In principle, n == 4 (mod 10) can give primes of the form prime(k)*n+prime(k+1), for all k from 1 up to 41, while prime(42)*4+prime(43)=181*4+191 == 5 (mod 10) that is nonprime. It'd be very interesting to find at least one n such that prime(k)*n+prime(k+1), k=1,...,41 are all prime.
There are no values of n such that prime(k)*n+prime(k+1), k=1,...,9 are all prime. Proof: If n = 3*i then 2*(3*i)+3 = 3*(2*i+1) is not prime. If n = 3*i+1 then 5*(3*i+1)+7 = 3*(5*i+4) is not prime. If n = 3*i+2 then 23*(3*i+2)+29 = 3*(23*i+25) is not prime. - Jason Yuen, Sep 02 2024

Examples

			3494 is OK because 2*3494+3, 3*3494+5, 5*3494+7, 7*3494+11, 11*3494+13, 13*3494+17 and 17*3494+19 all are primes.
		

Crossrefs

Cf. A067076 (k=1), A088879 (k=2), A111224 (k=3), A101123 (k=4), A102721 (k=5), A108976 (k=7).
Cf. A108110 (k=1..6), A379427 (k=1..8).

Programs

  • Mathematica
    s={};Do[If[Union[PrimeQ/@Table[Prime[k]*n+Prime[k+1], {k, 7}]]=={True}, s=Append[s, n]], {n, 4, 10000000, 10}];s
    Select[Range[9*10^6],AllTrue[Prime[Range[7]]#+Prime[Range[2,8]],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 24 2018 *)
  • PARI
    isok(n,upto=7)=for(k=1,upto,if(!isprime(prime(k)*n+prime(k+1)),return(0)));1
    for(n=1,3*10^7,if(isok(n),print1(n", "))) \\ Jason Yuen, Sep 02 2024

Extensions

a(13)-a(28) from Jason Yuen, Sep 02 2024

A125954 Least number k > 0 such that ((2n+1)^k - 2^k)/(2n-1) is prime.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 2, 11, 2, 5, 11, 2, 2, 5, 71, 2, 3, 2, 2, 167, 2, 17, 3, 2, 197, 149, 2, 2, 3, 3, 2, 2267, 2, 2, 3, 3, 2, 29, 2, 2531, 167, 2, 7, 3, 3, 2, 61, 2, 2, 11, 2, 2, 157, 2, 5, 7, 7, 149, 3, 5, 2, 379, 2, 41, 3, 2, 2, 3, 79, 11, 3, 2, 2, 97, 3, 2, 3, 3, 2, 1321, 2, 17, 31, 2, 61
Offset: 0

Views

Author

Alexander Adamchuk, Feb 07 2007

Keywords

Comments

All terms are primes.
a(n) = 2 for n = {1,2,4,5,7,8,10,13,14,17,19,20,22,...} = A067076 Numbers n such that 2n+3 is a prime.
a(34),...,a(40) = {2,2,3,3,2,29,2}.
a(42),...,a(80) = {167,2,7,3,3,2,61,2,2,11,2,2,157,2,5,7,7,149,3,5,2,379,2,41,3,2,2,3,79,11,3,2,2,97,3,2,3,3,2}.
a(82),...,a(90) = {2,17,31,2,61,7,2,2,5}.
a(93),...,a(95) = {383,2,2}.
a(97),...,a(100) = {2,2,5,7}.
a(102),...,a(124) = {13,11,2,5,5,17,3,103,2,19,2,2,3,2,31,37,2,2,3,3,7,3,2}.
a(127),...,a(131) = {2,61,31,2,157}.
a(133),...,a(142) = {2,2,7,3,2,13,2,2,7,3}.
a(144),...,a(146) = {173,2,11}.
a(148),...,a(150) = {3,17,107}.
a(n) is currently unknown for n = {33,41,81,91,92,96,101,125,126,132,143,147,...}.

Crossrefs

Cf. A067076.
Cf. A000043 = Primes p such that 2^p - 1 is prime.
Cf. A001348 = Mersenne numbers: 2^p - 1, where p is prime.
Cf. A057468 = numbers n such that 3^n - 2^n is prime.
Cf. A125958 = Least number k > 0 such that (2^k + (2n-1)^k)/(2n+1) is prime.

Programs

  • Mathematica
    Do[k = 1; While[ !PrimeQ[((2n+1)^k - 2^k)/(2n-1)], k++ ]; Print[k], {n, 100}] (* Ryan Propper, Mar 29 2007 *)
    lnk[n_]:=Module[{k=1},While[!PrimeQ[((2n+1)^k-2^k)/(2n-1)],k++];k]; Array[ lnk,90] (* Harvey P. Dale, May 19 2012 *)

Extensions

More terms from Ryan Propper, Mar 29 2007

A152843 Numbers n such that both 2n+3 and 4n+7 are prime.

Original entry on oeis.org

0, 1, 4, 10, 13, 19, 25, 40, 43, 55, 64, 85, 88, 94, 115, 118, 124, 139, 145, 178, 208, 214, 220, 244, 253, 295, 319, 325, 328, 340, 358, 370, 379, 403, 454, 475, 505, 508, 514, 523, 550, 610, 613, 643, 703, 718, 724, 739, 748, 754, 778, 790, 799, 865, 904, 943
Offset: 1

Views

Author

Vincenzo Librandi, Dec 14 2008

Keywords

Comments

Or, numbers n such that 2n+3 is a Sophie Germain prime. [Klaus Brockhaus, Dec 22 2008]

Examples

			For n = 10, 2*n+3 = 23 is prime and 4*n+7 = 47 is prime. 23 = A005384(5).
		

Crossrefs

Cf. A067076 (2n+3 is prime), A089986 (4n+7 is prime), A005384 (Sophie Germain primes).

Programs

  • Magma
    [ n: n in [0..1000] | IsPrime(2*n+3) and IsPrime(4*n+7) ];
  • Mathematica
    Join[{0}, Select[Range[1000], PrimeQ[2*#+3] && PrimeQ[4*#+7] &]] (* Vincenzo Librandi, Aug 30 2012 *)
    Select[Range[0,1000],AllTrue[{2#+3,4#+7},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 07 2015 *)

Extensions

Edited and extended by Klaus Brockhaus, Dec 22 2008

A154115 Numbers n such that n + 3 is prime.

Original entry on oeis.org

0, 2, 4, 8, 10, 14, 16, 20, 26, 28, 34, 38, 40, 44, 50, 56, 58, 64, 68, 70, 76, 80, 86, 94, 98, 100, 104, 106, 110, 124, 128, 134, 136, 146, 148, 154, 160, 164, 170, 176, 178, 188, 190, 194, 196, 208, 220, 224, 226, 230, 236, 238, 248, 254, 260, 266, 268, 274, 278
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 2 since (2 + 2)^2 - (2 + 1)^2 - 2 = 5.
		

Crossrefs

Cf. A067076 (a(n-1)/2).

Programs

  • Magma
    [n: n in [0..500] | IsPrime((n+2)^2-(n+1)^2-n)]; // Vincenzo Librandi, Nov 26 2010
    
  • Maple
    A154115 := proc(n) ithprime(n+1)-3 ; end proc: # R. J. Mathar, May 09 2010
  • Mathematica
    a[n_]:=(n+2)^2-(n+1)^2-n;lst={};Do[If[PrimeQ[a[n]],AppendTo[lst,n]],{n,6!}];lst
    Select[Range[0,300],PrimeQ[(#+2)^2-(#+1)^2-#]&] (* Harvey P. Dale, Nov 06 2013 *)
    Prime[Range[2,100]]-3 (* Harvey P. Dale, Jul 15 2017 *)
  • PARI
    is(n)=isprime(n+3) \\ Charles R Greathouse IV, Sep 02 2016

Formula

a(n) = A086801(n+1). - R. J. Mathar, May 09 2010

Extensions

New name based on a comment by Franklin T. Adams-Watters, Jan 30 2009

A154591 a(n) = 2*n^2 + 18*n + 7.

Original entry on oeis.org

27, 51, 79, 111, 147, 187, 231, 279, 331, 387, 447, 511, 579, 651, 727, 807, 891, 979, 1071, 1167, 1267, 1371, 1479, 1591, 1707, 1827, 1951, 2079, 2211, 2347, 2487, 2631, 2779, 2931, 3087, 3247, 3411, 3579, 3751, 3927, 4107, 4291, 4479, 4671, 4867, 5067, 5271
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Ninth diagonal of A144562.
2*a(n) + 67 is a square.

Crossrefs

Programs

  • Magma
    I:=[27, 51, 79]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 22 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {27, 51, 79}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
  • PARI
    for(n=1, 40, print1(2*n^2 + 18*n + 7", ")); \\ Vincenzo Librandi, Feb 22 2012
    
  • SageMath
    [2*n^2+18*n+7 for n in range(1,51)] #  G. C. Greubel, May 27 2024

Formula

G.f.: (9*x^2-6*x-7)/(x-1)^3. - Bruno Berselli, Dec 07 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 22 2012
Sum_{n>=1} 1/a(n) = 1621/20097 + tan(sqrt(67)*Pi/2)*Pi/(2*sqrt(67)). - Amiram Eldar, Feb 25 2023
E.g.f.: (7 + 20*x + 2*x^2)*exp(x). - G. C. Greubel, May 27 2024

A173178 Numbers k such that 2*k+3 is a prime of the form 3*A024893(m) + 2.

Original entry on oeis.org

1, 4, 7, 10, 13, 19, 22, 25, 28, 34, 40, 43, 49, 52, 55, 64, 67, 73, 82, 85, 88, 94, 97, 112, 115, 118, 124, 127, 130, 133, 139, 145, 154, 157, 172, 175, 178, 190, 193, 199, 208, 214, 220, 223, 229, 232, 238, 244, 250, 253, 259, 277, 280, 283, 292, 295, 298, 307, 319
Offset: 1

Views

Author

Eric Desbiaux, Feb 11 2010

Keywords

Comments

With the Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 1 + 3 OR 3* 1 + 2 = 5;
2* 4 + 3 OR 3* 3 + 2 = 11;
2* 7 + 3 OR 3* 5 + 2 = 17;
2*10 + 3 OR 3* 7 + 2 = 23;
2*13 + 3 OR 3* 9 + 2 = 29;
2*19 + 3 OR 3*13 + 2 = 41;
2*22 + 3 OR 3*15 + 2 = 47;
2*25 + 3 OR 3*17 + 2 = 53;
2*28 + 3 OR 3*19 + 2 = 59.
A024893 Numbers k such that 3k+2 is prime.
A007528 Primes of the form 6k-1.
A024898 Positive integers k such that 6k-1 is prime.
1, 4, 7, 10, 13, 19, ... = (3*(4*A024898 - A024893) - 7)/2 = (A112774 - 3*A024893 - 5)/2 = A003627 - (3*A024893 - 5)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 320], PrimeQ[(p = 2*# + 3)] && Mod[p, 3] == 2 &] (* Amiram Eldar, Jul 30 2024 *)

Formula

a(n) = 3*A059325(n) + 1. - Amiram Eldar, Jul 30 2024

Extensions

Data corrected and extended by Amiram Eldar, Jul 30 2024

A243811 Numbers k such that 2*k+3 and 2*k+5 are both prime.

Original entry on oeis.org

0, 1, 4, 7, 13, 19, 28, 34, 49, 52, 67, 73, 88, 94, 97, 112, 118, 133, 139, 154, 172, 208, 214, 229, 259, 283, 298, 307, 319, 328, 403, 409, 412, 427, 439, 508, 514, 523, 529, 544, 574, 613, 637, 643, 649, 658, 712, 724, 739, 742, 802, 808, 832, 847, 859, 892, 934
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2014

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2*n+3) and IsPrime(2*n+5)];
  • Mathematica
    Select[Range[0, 1000], PrimeQ[2 # + 3] && PrimeQ[2 # + 5] &]

Formula

a(n) = A040040(n)-2.

A290839 a(n) = smallest prime p such that 2p + 2n - 1 is prime.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 3, 2, 7, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 13, 3, 2, 3, 2, 11, 3, 2, 5, 7, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 13, 7, 11, 5, 19, 3, 2, 3, 2, 5, 3, 2, 2, 7, 5, 5, 3, 2, 2, 7, 3, 2, 13, 3, 2, 3, 2, 7, 3, 2
Offset: 0

Views

Author

XU Pingya, Aug 12 2017

Keywords

Crossrefs

Cf. A067076 (indices n at which a(n) = 2).

Programs

  • Mathematica
    Table[j=0; found=False; While[!found, j++; found=PrimeQ[2Prime[j]+2n-1]]; Prime[j], {n, 85}]
  • PARI
    a(n) = {my(p=2); while(!isprime(2*p+2*n-1), p = nextprime(p+1)); p;} \\ Michel Marcus, Aug 12 2017

Formula

a(-n) = A290838(n+1). - Iain Fox, Dec 14 2017

Extensions

a(0) prepended by Iain Fox, Dec 14 2017

A153167 Numbers n such that n+2 is not a Chen prime.

Original entry on oeis.org

2, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90
Offset: 1

Views

Author

Vincenzo Librandi, Dec 20 2008

Keywords

Comments

Contains all strictly positive even numbers A005843.
For each odd k>1 we can accumulate the numbers == k^2-2 (mod 2k) in a row, the last entry equal to A073577(k):
7; (k=3)
13, 23; (k=5)
19, 33, 47; (k=7)
25, 43, 61, 79; (k=9)
31, 53, 75, 97, 119; (k=11)
7, 63, 89, 115, 141, 167; (k=13)
43, 73, 103, 133, 163, 193,223; (k=17)
49, 83, 17, 151,185, 219, 253, 287; (k=19)
Each element T of this table has the format T= k^2-2-j*2*k, so T+2 is of the form k*(k-2*j), therefore not prime, and consequently all elements T are in the sequence.

Crossrefs

Extensions

Edited, 41, 59 (see A102540) etc. inserted by R. J. Mathar, Oct 16 2009
Previous Showing 41-50 of 64 results. Next