cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A360428 Inverse Mobius transformation of A338164.

Original entry on oeis.org

1, 7, 17, 40, 49, 119, 97, 208, 225, 343, 241, 680, 337, 679, 833, 1024, 577, 1575, 721, 1960, 1649, 1687, 1057, 3536, 1825, 2359, 2673, 3880, 1681, 5831, 1921, 4864, 4097, 4039, 4753, 9000, 2737, 5047, 5729, 10192, 3361, 11543, 3697, 9640, 11025, 7399, 4417, 17408, 7105, 12775
Offset: 1

Views

Author

R. J. Mathar, Feb 07 2023

Keywords

Crossrefs

Programs

  • Maple
    A360428 := proc(n)
        add(numtheory[mobius](n/d)*numtheory[tau](d)*d^2,d=numtheory[divisors](n)) ;
    end proc:
  • Mathematica
    f[p_, e_] := (e + 1 - e/p^2)*p^(2*e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)

Formula

a(n) = Sum_{d|n} A008683(n/d)*A000005(d)*d^2.
Dirichlet convolution of A034714 and A008683.
Dirichlet g.f.: zeta^2(s-2)/zeta(s).
From Amiram Eldar, Feb 09 2023: (Start)
Multiplicative with a(p^e) = (e + 1 - e/p^2)*p^(2*e).
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1/3 - zeta'(3)/zeta(3)) * n^3 / (3*zeta(3)), where gamma is Euler's constant (A001620). (End)
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^2. Cf. A069097.
a(n) = Sum_{d divides n} d^2 * J_2(n/d), where J_2(n) = A007434(n). (End)

A020478 Number of singular 2 X 2 matrices over Z(n) (i.e., with determinant = 0).

Original entry on oeis.org

1, 10, 33, 88, 145, 330, 385, 736, 945, 1450, 1441, 2904, 2353, 3850, 4785, 6016, 5185, 9450, 7201, 12760, 12705, 14410, 12673, 24288, 18625, 23530, 26001, 33880, 25201, 47850, 30721, 48640, 47553, 51850, 55825, 83160, 51985, 72010, 77649, 106720
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e - 1)*(p^(e + 1) + p^e - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
  • PARI
    a(n)=if(n<1, 0, direuler(p=2, n, (1-p*X)/((1-p^2*X)*(1-p^3*X)))[n])
    
  • PARI
    a(n)=local(c=0); forvec(x=vector(4,k,[1,n]),c+=((x[1]*x[2]-x[3]*x[4])%n==0)); c

Formula

From Vladeta Jovovic, Apr 22 2002: (Start)
a(n) = n^4 - A005353(n).
Multiplicative with a(p^e) = p^(2*e - 1)*(p^(e+1) + p^e - 1). (End)
Dirichlet g.f.: zeta(s-2)*zeta(s-3)/zeta(s-1).
A102631(n) | a(n). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^4 / (24*Zeta(3)). - Vaclav Kotesovec, Jan 31 2019
From Piotr Rysinski, Sep 11 2020: (Start)
a(n) = n * A069097(n).
Proof: a(n) is multiplicative with a(p^e) = p^(2*e - 1)*(p^(e+1) + p^e - 1), A069097(n) is multiplicative with A069097(p^e) = p^(e-1)*(p^e*(p+1)-1), so a(p^e) = p^e*A069097(p^e). (End)

A240547 Number of non-congruent solutions of x^2 + y^2 + z^2 + t^2 == 0 mod n.

Original entry on oeis.org

1, 8, 33, 32, 145, 264, 385, 128, 945, 1160, 1441, 1056, 2353, 3080, 4785, 512, 5185, 7560, 7201, 4640, 12705, 11528, 12673, 4224, 18625, 18824, 26001, 12320, 25201, 38280, 30721, 2048, 47553, 41480, 55825, 30240, 51985, 57608, 77649, 18560, 70561, 101640
Offset: 1

Views

Author

Laszlo Toth, Apr 07 2014

Keywords

Examples

			For n=2 the a(2)=8 solutions are (0,0,0,0), (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1), (1,1,1,1).
		

Crossrefs

Programs

  • Maple
    A240547 := proc(n) local a, x, y, z, t ; a := 0 ; for x from 0 to n-1 do for y
    from 0 to n-1 do for z from 0 to n-1 do for t from 0 to n-1 do if
    (x^2+y^2+z^2+t^2) mod n = 0 mod n then a := a+1 ; fi; od; od ; od; od;
    a ; end proc;
    # alternative
    A240547 := proc(n)
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if p = 2 then
                a := a*p^(2*e+1) ;
            else
                a := a* p^(2*e-1)*(p^(e+1)+p^e-1) ;
            end if;
        end do:
        a ;
    end proc:
    seq(A240547(n),n=1..100) ; # R. J. Mathar, Jun 25 2018
  • Mathematica
    b[2, e_] := 2^(2 e + 1);
    b[p_, e_] := p^(2 e - 1)*(p^(e + 1) + p^e - 1);
    a[n_] := Times @@ b @@@ FactorInteger[n];
    Array[a, 42] (* Jean-François Alcover, Dec 05 2017 *)
  • PARI
    a(n) = my(m); if( n<1, 0, forvec( v = vector(4, i, [0, n-1]), m += (0 == norml2(v)%n))); m /* Michael Somos, Apr 07 2014 */
    
  • PARI
    a(n) = {my(f = factor(n), res = 1, start = 1, p, e, i); if(n % 2 == 0, res = 1<<(f[1,2]<<1+1); start = 2); for(i = start, #f~, p = f[i, 1]; e = f[i, 2]; res*=(p^(e<<1-1)*(p^(e+1)+p^e-1))); res} \\ David A. Corneth, Jul 22 2018

Formula

Multiplicative, with a(2^e) = 2^(2e+1) for e>=1, a(p^e) = p^(2e-1)*(p^(e+1)+p^e-1) for p > 2, e>=1.
For odd n, a(n) = A069097(n)*n = A020478(n). - R. J. Mathar, Jun 23 2018
Sum_{k=1..n} a(k) ~ c * n^4 + O(n^3 * log(n)), where c = 5*Pi^2/(168*zeta(3)) = 0.244362... (Tóth, 2014). - Amiram Eldar, Oct 18 2022

A309322 Expansion of Sum_{k>=1} phi(k) * x^k/(1 - x^k)^3, where phi = Euler totient function (A000010).

Original entry on oeis.org

1, 4, 8, 15, 19, 35, 34, 56, 63, 86, 76, 141, 103, 157, 182, 212, 169, 294, 208, 355, 335, 359, 298, 556, 405, 490, 522, 657, 463, 865, 526, 816, 773, 812, 856, 1239, 739, 1003, 1058, 1424, 901, 1610, 988, 1525, 1617, 1445, 1174, 2188, 1435, 1960, 1760, 2091, 1483, 2529, 1994
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 23 2019

Keywords

Comments

Dirichlet convolution of Euler totient function with triangular numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[EulerPhi[n/d] d (d + 1)/2, {d, Divisors[n]}], {n, 1, 55}]
    Table[Sum[Sum[GCD[j, k, n], {j, 1, k}], {k, 1, n}], {n, 1, 55}]

Formula

a(n) = Sum_{d|n} phi(n/d) * d * (d + 1)/2.
a(n) = Sum_{k=1..n} Sum_{j=1..k} gcd(j,k,n).
a(n) = Sum_{k=1..n} gcd(n,k)*(gcd(n,k)+1)/2. - Richard L. Ollerton, May 07 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (36*zeta(3)). - Vaclav Kotesovec, May 23 2021
a(n) = (A018804(n) + A069097(n))/2. - Ridouane Oudra, May 22 2025

A372926 a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^4.

Original entry on oeis.org

1, 19, 89, 316, 649, 1691, 2449, 5104, 7281, 12331, 14761, 28124, 28729, 46531, 57761, 81856, 83809, 138339, 130681, 205084, 217961, 280459, 280369, 454256, 406225, 545851, 590409, 773884, 708121, 1097459, 924481, 1310464, 1313729, 1592371, 1589401, 2300796
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e-2) * (p^2 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 2));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^2.
a(n) = Sum_{d|n} mu(n/d) * d^2 * sigma_2(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(2*e-2) * (p^2 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-4)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = zeta(3)/zeta(5) = 1.1592484598... . (End)

A294403 E.g.f.: exp(-Sum_{n>=1} sigma(n) * x^n).

Original entry on oeis.org

1, -1, -5, -7, 1, 839, 4171, 54305, 102817, -4303441, -74521349, -1595325271, -20768141855, -222701825737, 1485790534411, 65580347824529, 2880129557707201, 67631429234674655, 1543424936566399867, 23542870556917468889, 119940955037901088321
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2017

Keywords

Crossrefs

E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): A294402 (k=0), this sequence (k=1), A294404 (k=2).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(-sum(k=1, N, sigma(k)*x^k))))

Formula

a(0) = 1 and a(n) = (-1) * (n-1)! * Sum_{k=1..n} k*A000203(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} gcd(k,j)^2. - Ilya Gutkovskiy, Aug 17 2021

A332654 a(n) = Sum_{k=1..n} (k/gcd(n, k))^2.

Original entry on oeis.org

1, 2, 6, 12, 31, 33, 92, 96, 165, 172, 386, 239, 651, 499, 656, 776, 1497, 846, 2110, 1262, 1903, 2037, 3796, 1867, 4181, 3408, 4530, 3673, 7715, 3183, 9456, 6232, 7761, 7754, 10062, 6248, 16207, 10889, 12980, 9906, 22141, 9308, 25586, 15027, 17075, 19483, 33512, 14851
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Comments

Inverse Moebius transform of A053818.

Crossrefs

Programs

  • Magma
    [&+[(k div Gcd(n,k))^2:k in [1..n]]:n in [1..50]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Sum[(k/GCD[n, k])^2, {k, 1, n}], {n, 1, 48}]
    Table[Sum[Sum[If[GCD[k, d] == 1, k^2, 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 48}]

Formula

a(n) = Sum_{k=1..n} (lcm(n, k)/n)^2.
a(n) = Sum_{d|n} Sum_{k=1..d, gcd(k, d) = 1} k^2.

A321294 a(n) = Sum_{d|n} mu(n/d)*d*sigma_n(d).

Original entry on oeis.org

1, 9, 83, 1058, 15629, 282381, 5764807, 134480900, 3486902505, 100048836321, 3138428376731, 107006403495850, 3937376385699301, 155572843119518781, 6568408661060858767, 295150157013526773768, 14063084452067724991025, 708236697425777157039381
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] d DivisorSigma[n, d], {d, Divisors[n]}], {n, 18}]
    Table[Sum[EulerPhi[n/d] d^(n + 1), {d, Divisors[n]}], {n, 18}]
    Table[Sum[GCD[n, k]^(n + 1), {k, n}], {n, 18}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n)); \\ Michel Marcus, Nov 03 2018
    
  • Python
    from sympy import totient, divisors
    def A321294(n):
        return sum(totient(d)*(n//d)**(n+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

a(n) = [x^n] Sum_{i>=1} Sum_{j>=1} mu(i)*j^(n+1)*x^(i*j)/(1 - x^(i*j))^2.
a(n) = Sum_{d|n} phi(n/d)*d^(n+1).
a(n) = Sum_{k=1..n} gcd(n,k)^(n+1).
a(n) ~ n^(n+1). - Vaclav Kotesovec, Nov 02 2018

A372675 a(n) = Sum_{j=1..n} Sum_{k=1..n} sigma(j*k).

Original entry on oeis.org

1, 14, 59, 190, 401, 914, 1499, 2632, 4113, 6424, 8645, 13284, 17023, 23092, 30715, 40484, 48711, 63890, 75351, 95792, 116421, 139822, 159911, 199176, 229499, 267438, 309283, 364462, 404933, 482792, 532553, 611208, 688593, 772540, 862471, 998760, 1083615, 1200328
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2024

Keywords

Comments

Sum_{j=1..n} sigma(j*k) ~ A069097(k) * Pi^2 * n^2 / (12*k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, j*k], {j, 1, n}, {k, 1, n}], {n, 1, 50}]
    s = 1; Join[{1}, Table[s += DivisorSigma[1, n^2] + 2*Sum[DivisorSigma[1, j*n], {j, 1, n - 1}], {n, 2, 50}]]

Formula

a(n) ~ c * n^4, where c = Pi^4 / (144*zeta(3)) = 0.56274...

A033457 GCD-convolution of squares A000290 with themselves.

Original entry on oeis.org

1, 2, 6, 4, 19, 6, 28, 24, 45, 10, 98, 12, 79, 94, 120, 16, 201, 18, 238, 164, 171, 22, 436, 120, 229, 234, 426, 28, 695, 30, 496, 352, 369, 370, 1014, 36, 451, 470, 1068, 40, 1261, 42, 946, 1020, 639, 46, 1832, 336, 1225, 754, 1278, 52, 1899, 774, 1924, 920, 981
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[d^2*EulerPhi[(n + 2)/d], {d, Most@ Divisors[n + 2]}], {n, 0, 47}] (* Michael De Vlieger, Mar 20 2015 *)
    f[p_, e_] := p^(e - 1)*(p^e*(p + 1) - 1); a[n_] := Times @@ f @@@ FactorInteger[n + 2] - (n + 2)^2; Array[a, 100, 0] (* Amiram Eldar, Dec 06 2024 *)
  • PARI
    a(n) = {my(f = factor(n+2)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^(e-1)*(p^e*(p+1) - 1)) - (n+2)^2;} \\ Amiram Eldar, Dec 06 2024
  • Sage
    sum([d^2*euler_phi(int((n+2)/d)) for d in range(1,n+2) if (n+2)%d==0]) # Danny Rorabaugh, Mar 20 2015
    

Formula

a(n-2) = Sum_{d|n, dVladeta Jovovic, Aug 27 2003
From Amiram Eldar, Dec 06 2024: (Start)
a(n) = A069097(n+2) - (n+2)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)/zeta(3) - 1)/3 = (A306633 - 1)/3 = 0.122810925... . (End)
Previous Showing 11-20 of 29 results. Next