cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A347176 G.f.: Sum_{k>=1} (-1)^(k+1) * k * x^(k^2) / (1 - x^(k^2)).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, -1, 4, 1, 1, -1, 1, 1, 1, -5, 1, 4, 1, -1, 1, 1, 1, -1, 6, 1, 4, -1, 1, 1, 1, -5, 1, 1, 1, -4, 1, 1, 1, -1, 1, 1, 1, -1, 4, 1, 1, -5, 8, 6, 1, -1, 1, 4, 1, -1, 1, 1, 1, -1, 1, 1, 4, -13, 1, 1, 1, -1, 1, 1, 1, -4, 1, 1, 6, -1, 1, 1, 1, -5, 13, 1, 1, -1, 1, 1, 1, -1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Comments

Excess of sum of square roots of odd square divisors of n over sum of square roots of even square divisors of n.

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) #^(1/2) &, IntegerQ[#^(1/2)] &], {n, 1, 90}]
    f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 3 - 2^(Floor[e/2] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), (-1)^((d%2)+1)*sqrtint(d))); \\ Michel Marcus, Aug 22 2021
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1]==2, 3 - 2^(floor(f[i,2]/2) + 1), (f[i,1]^(floor(f[i,2]/2) + 1) - 1)/(f[i,1] - 1)));} \\ Amiram Eldar, Nov 15 2022

Formula

Multiplicative with a(2^e) = 3 - 2^(floor(e/2) + 1), and a(p^e) = (p^(floor(e/2) + 1) - 1)/(p - 1) for p > 2. - Amiram Eldar, Nov 15 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2) (A002162). - Amiram Eldar, Mar 01 2023

A360162 a(n) is the sum of the square roots of the unitary divisors of n that are squares.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 5, 8, 6, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 9, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 6, 3, 1, 1, 1, 5, 10, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

The number of unitary divisors of n that are squares is A056624(n) and their sum is A358347(n).
The unitary analog of A069290.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1)); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d square} sqrt(d).
Multiplicative with a(p^e) = p^(e/2) + 1 if e is even, and 1 if e is odd.
Dirichlet g.f.: zeta(s)*zeta(2*s-1)/zeta(3*s-1).
Sum_{k=1..n} a(k) ~ (3*n/Pi^2)*(log(n) + 3*gamma - 1 - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A365332 The sum of divisors of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 7, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 7, 31, 1, 13, 7, 1, 1, 1, 31, 1, 1, 1, 91, 1, 1, 1, 7, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 13, 1, 7, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 91, 1, 1, 31, 7, 1, 1, 1, 31, 121
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

All the terms are odd.
The number of these divisors is A365331(n).
The sum of divisors of the square root of the largest square dividing n is A069290(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1 - Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 1 - f[i,2]%2) - 1)/(f[i,1] - 1));}

Formula

a(n) = A000203(A008833(n)).
a(n) = 1 if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = (p^(e + 1 - (e mod 2)) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(2*s-2) / zeta(4*s-2).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = 5*zeta(3/2)/Pi^2 = 1.323444812234... .

A380325 The sum of the square roots of the squares that divide the n-th exponentially odd number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 20 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^((e+1)/2) - 1)/(p - 1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]^((f[i, 2]+1)/2) - 1)/(f[i, 1] - 1), 0));}
    list(lim) = select(x -> x > 0, vector(lim, i, s(i)));

Formula

a(n) = A069290(A268335(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * A330596 / d = 1.74789521005721521109..., where d = A065463 is the asymptotic density of the exponentially odd numbers.

A345320 Sum of the divisors of n whose square does not divide n.

Original entry on oeis.org

0, 2, 3, 4, 5, 11, 7, 12, 9, 17, 11, 25, 13, 23, 23, 24, 17, 35, 19, 39, 31, 35, 23, 57, 25, 41, 36, 53, 29, 71, 31, 56, 47, 53, 47, 79, 37, 59, 55, 87, 41, 95, 43, 81, 74, 71, 47, 117, 49, 87, 71, 95, 53, 116, 71, 117, 79, 89, 59, 165, 61, 95, 100, 112, 83, 143, 67, 123, 95, 143, 71, 183, 73, 113, 118, 137, 95, 167, 79, 179, 108, 125, 83
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 13 2021

Keywords

Comments

Inverse Möbius transform of n+n^(1/2)*((-1)^tau(n)-1)/2. - Wesley Ivan Hurt, Jul 07 2025

Examples

			a(16) = 24; The divisors of 16 whose square does not divide 16 are 8 and 16. The sum of the divisors is then 8 + 16 = 24.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A056595, A069290.

Programs

  • Mathematica
    Table[Sum[k (Ceiling[n/k^2] - Floor[n/k^2]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
    sdnd[n_]:=Total[Select[Divisors[n],Mod[n,#^2]!=0&]]; Array[sdnd,100] (* Harvey P. Dale, Jul 07 2025 *)
  • PARI
    a(n) = sumdiv(n, d, if (n % d^2, d)); \\ Michel Marcus, Jun 13 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A345320(n):
        f = factorint(n).items()
        return (prod(p**(q+1)-1 for p, q in f) - prod(p**(q//2+1)-1 for p, q in f))//prod(p-1 for p, q in f) # Chai Wah Wu, Jun 14 2021

Formula

a(n) = Sum_{k=1..n} k * (ceiling(n/k^2) - floor(n/k^2)) * (1 - ceiling(n/k) + floor(n/k)).
a(n) = A000203(n) - A069290(n). - Rémy Sigrist, Jun 14 2021
a(n) = Sum_{d|n} (d+d^(1/2)*((-1)^tau(d)-1)/2). - Wesley Ivan Hurt, Jul 07 2025

A360163 a(n) is the sum of the square roots of the divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

First differs from A336649 at n = 27.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, (f[i, 1]^(floor(f[i, 2]/2)+1) - 1)/(f[i, 1] - 1))); }

Formula

a(n) = Sum_{d|n, d odd square} sqrt(d).
a(n) = (A069290(n) + A347176(n))/2.
a(n) = A069290(n) if n is not a multiple of 4.
Multiplicative with a(2^e) = 1, and a(p^e) = (p^(floor(e/2)+1)-1)/(p-1) for p > 2.
Dirichlet g.f.: zeta(s)*zeta(2*s-1)*(1-2^(1-2*s)).
Sum_{k=1..n} a(k) ~ (n/4) * (log(n) + 3*gamma - 1 + 2*log(2)), where gamma is Euler's constant (A001620).

A360164 a(n) is the sum of the square roots of the unitary divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

First differs from A336649 at n = 27.
The unitary analog of A360163.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1))); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d odd square} sqrt(d).
a(n) = A360162(n) if n is not of the form (2*m - 1)*4^k where m >= 1, k >= 1 (A108269).
Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = p^(e/2) + 1 if e is even and 1 if e is odd.
Dirichlet g.f.: (zeta(s)*zeta(2*s-1)/zeta(3*s-1))*(2^(3*s)-2^(s+1))/(2^(3*s)-2).
Sum_{k=1..n} a(k) ~ (2*n/Pi^2)*(log(n) + 3*gamma - 1 + log(2) - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A365336 The sum of exponentially odd divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 11, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A295295 at n = 64.
The sum of divisors of the square root of the largest square dividing n is A069290(n).
The number of these divisors is A365335(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*Floor[(e+2)/4] + 1) - p)/(p^2 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(2*((f[i,2]+2)\4) + 1) - f[i,1])/(f[i,1]^2 - 1) + 1);}

Formula

a(n) = A033634(A000188(n)).
a(n) = 1 if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = (p^(2*floor((e+2)/4) + 1) - p)/(p^2 - 1) + 1. [corrected by Georg Fischer, Oct 07 2023]
Dirichlet g.f.: zeta(s) * zeta(4*s-2) * Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(4*s-2)).
From Vaclav Kotesovec, Sep 02 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(4*s-2) * Product_{p prime} (1 - 1/p^s + 1/p^(2*s-1) - 1/p^(3*s-1) - 1/p^(4*s-2) + 1/p^(5*s-2)).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(4*s-2) * Product_{p prime} (1 - 2/p^(4*s-2) + 1/p^(6*s-3)).
Let f(s) = Product_{p prime} (1 - 2/p^(4*s-2) + 1/p^(6*s-3)), then Sum_{k=1..n} a(k) ~ Pi^2/12 * n * (f(1) * (log(n) + 3*gamma - 1 + 24*zeta'(2)/Pi^2) + f'(1)), where f(1) = Product_{p prime} (1 - 2/p^2 + 1/p^3) = A065464 = 0.42824950567709444021876..., f'(1) = f(1) * Sum_{primes p} 2*(4*p-3)*log(p) / (p^3 - 2*p + 1) = 1.617322217899181826790... and gamma is the Euler-Mascheroni constant A001620. (End)

A333694 Expansion of Sum_{k>=1} k * x^k / (1 - x^(k^2)).

Original entry on oeis.org

1, 3, 4, 5, 6, 9, 8, 9, 10, 13, 12, 16, 14, 17, 16, 17, 18, 21, 20, 25, 25, 25, 24, 25, 26, 29, 28, 29, 30, 41, 32, 33, 34, 37, 36, 41, 38, 41, 43, 41, 42, 51, 44, 45, 46, 49, 48, 52, 50, 53, 52, 57, 54, 57, 61, 64, 61, 61, 60, 61, 62, 65, 64, 65, 66, 72, 68, 73, 70, 73
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 04 2020

Keywords

Comments

Sum of divisors d of n such that n/d == 1 (mod d).

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(irem(n/d-1, d)=0, d, 0), d=numtheory[divisors](n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Apr 04 2020
  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[k x^k/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, Mod[n/# - 1, #] == 0 &], {n, 1, 70}]
  • PARI
    A333694(n) = sumdiv(n,d,d*(0==(((n/d)-1)%d))); \\ Antti Karttunen, Apr 04 2020, after the second Mathematica program.

Formula

G.f.: Sum_{k>=1} k * x^k / (1 - x^(k^2)).

A361793 Sum of the squares d^2 of the divisors d satisfying d^3|n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 10, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 10, 1, 5, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5
Offset: 1

Views

Author

R. J. Mathar, Mar 24 2023

Keywords

Comments

The Mobius transform is 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, ... = n^(2/3)*A010057(n).

Crossrefs

Programs

  • Maple
    gsigma := proc(n,z,k)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(n,d^k) = 0 then
                a := a+d^z ;
            end if ;
        end do:
        a ;
    end proc:
    seq( gsigma(n,2,3),n=1..80) ;
  • Mathematica
    f[p_, e_] := (p^(2*(Floor[e/3] + 1)) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 24 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (ispower(d, 3), sqrtnint(d, 3)^2)); \\ Michel Marcus, Mar 24 2023
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1/((1-X)*(1-p^2*X^3))))[n], ", ")) \\ Vaclav Kotesovec, Jun 26 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A361793(n): return prod((p**(e//3+1<<1)-1)//(p**2-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 24 2023

Formula

a(n) = Sum_{d^3|n} d^2.
Multiplicative with a(p^e) = (p^(2*(floor(e/3) + 1)) - 1)/(p^2 - 1). - Amiram Eldar, Mar 24 2023
G.f.: Sum_{k>=1} k^2 * x^(k^3) / (1 - x^(k^3)). - Ilya Gutkovskiy, Jun 05 2024
From Vaclav Kotesovec, Jun 26 2024: (Start)
Dirichlet g.f.: zeta(s)*zeta(3*s-2).
Sum_{k=1..n} a(k) ~ n*(log(n) + 4*gamma - 1)/3, where gamma is the Euler-Mascheroni constant A001620. (End)
Previous Showing 11-20 of 21 results. Next