cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A098269 a(n) = 2^n*P_n(4), 2^n times the Legendre polynomial of order n at 4.

Original entry on oeis.org

1, 8, 94, 1232, 16966, 240368, 3468844, 50712992, 748553926, 11131168688, 166498969924, 2502416381792, 37759888297756, 571681667171168, 8679980422677784, 132116085646644032, 2015249400937940806
Offset: 0

Views

Author

Paul Barry, Sep 01 2004

Keywords

Comments

Central coefficients of (1+8x+15x^2)^n. 2^n*LegendreP(n,k) yields the central coefficients of (1+2kx+(k^2-1)x^2)^n, with g.f. 1/sqrt(1-4kx+4x^2).
16th binomial transform of 2^n*LegendreP(n,-4) = (-1)^n*A098269(n). - Paul Barry, Sep 03 2004
Diagonal of rational functions 1/(1 + x + 3*y + x*z - 2*x*y*z), 1/(1 - x + y + 3*x*z - 2*x*y*z), 1/(1 - x - x*y - 3*y*z - 2*x*y*z). - Gheorghe Coserea, Jul 03 2018

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-16*x+4*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    a[n_] := 3^n*HypergeometricPFQ[{-n, -n}, {1}, 5/3]; Flatten[Table[a[n], {n,0,16}]] (* Detlef Meya, May 21 2024 *)
  • PARI
    a(n)=pollegendre(n,4)<Charles R Greathouse IV, Oct 24 2011
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)^2*3^k*5^(n-k))} \\ Paul D. Hanna, Sep 29 2012

Formula

G.f.: 1/sqrt(1-16x+4x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n, k)*binomial(2(n-k), n)*4^(n-2k).
E.g.f.: exp(8*x)*BesselI(0, 2*sqrt(15)*x), cf. A084770. - Vladeta Jovovic, Sep 01 2004
a(n) = Sum_{k=0..n} binomial(n,k)^2 * 3^k * 5^(n-k). - Paul D. Hanna, Sep 29 2012
D-finite with recurrence: n*a(n) = 8*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(450+120*sqrt(15))*(8+2*sqrt(15))^n/(30*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
a(n) = 3^n*hypergeom([-n, -n], [1], 5/3) = 5^n*hypergeom([-n, -n], [1], 3/5). - Detlef Meya, May 21 2024

A110124 A scaled Legendre triangle.

Original entry on oeis.org

1, 0, 1, -2, 2, 1, 0, 4, 4, 1, 6, 8, 22, 6, 1, 0, 16, 136, 52, 8, 1, -20, 32, 886, 504, 94, 10, 1, 0, 64, 5944, 5136, 1232, 148, 12, 1, 70, 128, 40636, 53856, 16966, 2440, 214, 14, 1, 0, 256, 281488, 575296, 240368, 42256, 4248, 292, 16, 1, -252, 512, 1968934, 6225792, 3468844, 752800, 88566, 6776, 382, 18, 1
Offset: 0

Views

Author

Paul Barry, Jul 13 2005

Keywords

Comments

Row sums are A110125. Diagonal sums are A110126. Columns include A000079, A069835, A084773, and A098269.

Examples

			Rows begin
1;
0,1;
-2,2,1;
0,4,4,1;
6,8,22,6,1;
0,16,136,62,8,1;
-20,32,886,504,94,10,1;
		

Programs

Formula

Number triangle T(n, k)=2^(n-k)*LegendreP(n-k, k); T(n, k)=sum{j=0..floor((n-k)/2), (-1)^j*C(n-k, j)C(2n-2k-2j, n-k)k^(n-k-2j)}.

A152842 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,-1,0,0,0,0,0,0,...] DELTA [3,-2,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 3, 1, 4, 3, 1, 7, 15, 9, 1, 8, 22, 24, 9, 1, 11, 46, 90, 81, 27, 1, 12, 57, 136, 171, 108, 27, 1, 15, 93, 307, 579, 621, 351, 81, 1, 16, 108, 400, 886, 1200, 972, 432, 81, 1, 19, 156, 724, 2086, 3858, 4572, 3348, 1377, 243, 1, 20, 175, 880, 2810, 5944, 8430, 7920
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2008

Keywords

Examples

			The triangle T(n,k) begins:
n\k  0   1    2     3     4      5      6      7      8      9     10    11   12
0:   1
1:   1   3
2:   1   4    3
3:   1   7   15     9
4:   1   8   22    24     9
5:   1  11   46    90    81     27
6:   1  12   57   136   171    108     27
7:   1  15   93   307   579    621    351     81
8:   1  16  108   400   886   1200    972    432     81
9:   1  19  156   724  2086   3858   4572   3348   1377    243
10:  1  20  175   880  2810   5944   8430   7920   4725   1620    243
11:  1  23  235  1405  5450  14374  26262  33210  28485  15795   5103   729
12:  1  24  258  1640  6855  19824  40636  59472  61695  44280  20898  5832  729
... reformatted and extended. - _Franck Maminirina Ramaharo_, Feb 28 2018
		

Crossrefs

Programs

  • Haskell
    a152842 n k = a152842_tabl !! n !! k
    a152842_row n = a152842_tabl !! n
    a152842_tabl = map fst $ iterate f ([1], 3) where
       f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 4 - z)
    -- Reinhard Zumkeller, May 01 2014

Formula

T(n,k) = T(n-1,k) + (2-(-1)^n)*T(n-1,k-1).
Sum_{k=0..n} T(n,k) = A094015(n).
T(n,n) = A108411(n+1).
T(2n,n) = A069835(n).
G.f.: (1+x+x*y)/(1-x^2-4*x^2*y-3*x^2*y^2). - Philippe Deléham , Nov 09 2013
T(n,k) = T(n-2,k) + 4*T(n-2,k-1) + 3*T(n-2,k-2), T(0,0) = T(1,0) = 1, T(1,1) = 3, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 09 2013

A098659 Expansion of 1/sqrt((1-7*x)^2-24*x^2).

Original entry on oeis.org

1, 7, 61, 595, 6145, 65527, 712909, 7863667, 87615745, 983726695, 11112210781, 126142119187, 1437751935361, 16443380994775, 188609259215725, 2168833084841395, 24994269200292865, 288596644195946695, 3337978523215692925, 38666734085509918675
Offset: 0

Views

Author

Paul Barry, Sep 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^2*6^k, {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Sep 15 2012 *)
    CoefficientList[Series[1/Sqrt[(1-7*x)^2-24*x^2], {x, 0, 25}], x] (* Stefano Spezia, Dec 04 2018 *)
    a[n_] := 5^n*HypergeometricPFQ[{-n,n+1},{1},-1/5]; Table[a[n],{n,0,19}] (* Detlef Meya, May 24 2024 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-14*x+25*x^2)) \\ Joerg Arndt, May 12 2013

Formula

G.f.: 1/sqrt(1-14*x+25*x^2).
E.g.f.: exp(7*x)*BesselI(0, 2*sqrt(6)*x).
a(n) = Sum_{k=0..n} C(n, k)^2*6^k.
a(n) = [x^n] (1+7*x+6*x^2)^n.
From Vaclav Kotesovec, Sep 15 2012: (Start)
General recurrence for Sum_{k=0..n} C(n,k)^2*x^k (this is case x=6): (n+2)*a(n+2)-(x+1)*(2*n+3)*a(n+1)+(x-1)^2*(n+1)*a(n)=0.
Asymptotic (Rob Noble, 2010): a(n) ~ (1+sqrt(x))^(2*n+1)/(2*x^(1/4)*sqrt(Pi*n)), this is case x=6. (End)
D-finite with recurrence: n*a(n) +7*(-2*n+1)*a(n-1) +25*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 20 2020
a(n) = 5^n*hypergeom([-n, n + 1], [1], -1/5). - Detlef Meya, May 24 2024

A335309 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^(n-k).

Original entry on oeis.org

1, 3, 22, 245, 3606, 65527, 1411404, 35066313, 985483270, 30869546411, 1065442493556, 40144438269949, 1638733865336764, 72012798200637855, 3388250516614331416, 169894851136173584145, 9041936334960057699654, 508945841697238471315027, 30202327515992972576218980
Offset: 0

Views

Author

Ilya Gutkovskiy, May 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^(n - k), {k, 0, n}], {n, 1, 18}]]
    Table[SeriesCoefficient[1/Sqrt[1 - 2 (n + 2) x + n^2 x^2], {x, 0, n}], {n, 0, 18}]
    Table[n! SeriesCoefficient[Exp[(n + 2) x] BesselI[0, 2 Sqrt[n + 1] x], {x, 0, n}], {n, 0, 18}]
    Table[Hypergeometric2F1[-n, -n, 1, 1 + n], {n, 0, 18}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^2*(n+1)^k); \\ Michel Marcus, Jun 01 2020

Formula

a(n) = central coefficient of (1 + (n + 2)*x + (n + 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(n + 2)*x + n^2*x^2).
a(n) = n! * [x^n] exp((n + 2)*x) * BesselI(0,2*sqrt(n + 1)*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * (n+1)^k.
a(n) ~ exp(2*sqrt(n)) * n^(n - 1/4) / (2*sqrt(Pi)) * (1 + 11/(12*sqrt(n))). - Vaclav Kotesovec, Jan 09 2023

A387340 a(n) = Sum_{k=0..n} 3^k * binomial(n+3,k) * binomial(n+3,k+3).

Original entry on oeis.org

1, 16, 175, 1640, 14189, 117152, 939036, 7379040, 57188010, 438810592, 3342302821, 25316084248, 190937278805, 1435287936320, 10760879892008, 80509920297792, 601343784616830, 4485466826475360, 33420579148668670, 248788060638391120, 1850652536242372786
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * Binomial(n+3,k) * Binomial(n+3,k+3): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    Table[Sum[3^k * Binomial[n+3,k]*Binomial[n+3, k+3],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(n+3, k)*binomial(n+3, k+3));
    

Formula

n*(n+6)*a(n) = (n+3) * (4*(2*n+5)*a(n-1) - 4*(n+2)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 3^k * 4^(n-2*k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = [x^n] (1+4*x+3*x^2)^(n+3).
E.g.f.: exp(4*x) * BesselI(3, 2*sqrt(3)*x) / (3*sqrt(3)), with offset 3.

A054122 T(2n,n), array T as in A054120.

Original entry on oeis.org

1, 3, 18, 114, 750, 5058, 34692, 240852, 1687446, 11906610, 84490428, 602335836, 4310670156, 30950436468, 222844189320, 1608369633384, 11632913018598, 84294762019218, 611831430746124, 4447397950230540
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A069835.

Programs

  • Mathematica
    Table[SeriesCoefficient[(1-x)/Sqrt[1-8*x+4*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 09 2012 *)
  • PARI
    a(n)=(2*pollegendre(n,2) - pollegendre(n-1,2))<<(n-1) \\ Charles R Greathouse IV, Mar 18 2017

Formula

a(n) = A069835(n) - A069835(n-1).
G.f.: (1-x)/sqrt(1-8*x+4*x^2). - Vladeta Jovovic, May 13 2003
D-finite with recurrence: (n-1)*n*a(n) = 4*(n-1)*(2*n-1)*a(n-1) - 4*(n-2)*n*a(n-2). - Vaclav Kotesovec, Oct 09 2012
a(n) ~ sqrt(6+4*sqrt(3))*(4+2*sqrt(3))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 09 2012
D-finite with recurrence n*a(n) +3*(-3*n+2)*a(n-1) +12*(n-2)*a(n-2) +4*(-n+3)*a(n-3)=0. - R. J. Mathar, Jun 13 2013

A208426 Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-3*x)^(3*n+1).

Original entry on oeis.org

1, 3, 15, 99, 711, 5373, 42099, 338355, 2771127, 23028813, 193610385, 1643215005, 14056350075, 121040308665, 1048212778635, 9122168556819, 79727173530327, 699443806767525, 6156776010386481, 54356715121718349, 481194980656865721, 4270165015550478003
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2012

Keywords

Comments

Compare g.f. to: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1), which is a g.f. of the Franel numbers (A000172).
Diagonal of rational functions 1/(1 - x*y - y*z - x*z - 3*x*y*z), 1/(1 - x*y + y*z + x*z - 3*x*y*z). - Gheorghe Coserea, Jul 04 2018
Diagonal of the rational function 1/(1 - (x^2 + y^2 + z^2 + 3*x*y*z)). - Seiichi Manyama, Jul 05 2025

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 99*x^3 + 711*x^4 + 5373*x^5 + 42099*x^6 + ...
where
A(x) = 1/(1-3*x) + 6*x^2/(1-3*x)^4 + 90*x^4/(1-3*x)^7 + 1680*x^6/(1-3*x)^10 + 34650*x^8/(1-3*x)^13 + 756756*x^10/(1-3*x)^16 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[3^n * HypergeometricPFQ[{1/2 - n/2, -n/2, 1 + n}, {1, 1}, 4/9], {n, 0, 25}] (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-3*x+x*O(x^n))^(3*m+1)),n)}
    for(n=0,31,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=0, n\2, (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k)); \\ Gheorghe Coserea, Jul 04 2018

Formula

From Gheorghe Coserea, Jul 04 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k).
G.f. y=A(x) satisfies: 0 = x*(3*x + 2)*(27*x^3 + 9*x - 1)*y'' + (243*x^4 + 216*x^3 + 27*x^2 + 36*x - 2)*y' + 3*(27*x^3 + 33*x^2 - 2*x + 2)*y.
(End)
From Vaclav Kotesovec, Oct 07 2020: (Start)
Recurrence: n^2*(3*n - 5)*a(n) = 3*(9*n^3 - 24*n^2 + 17*n - 4)*a(n-1) + 3*(3*n - 4)*a(n-2) + 27*(n-2)^2*(3*n - 2)*a(n-3).
a(n) ~ sqrt(2 + sqrt(5)*phi^(-1/3) + sqrt(5)*phi^(1/3)) * 3^n * (1 + phi^(-2/3) + phi^(2/3))^n / (2*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
(End)

A382405 a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k) * 2^(n-k).

Original entry on oeis.org

1, 4, 34, 352, 4006, 48184, 600916, 7687936, 100240198, 1326277144, 17753591164, 239915864896, 3267780399196, 44805617380528, 617844108170344, 8561667414341632, 119151750609504838, 1664497333624420888, 23330380347342383404, 327990673915214512192, 4623496960858710060916
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2025

Keywords

Comments

Diagonal of the rational function 1 / (1 - x - x*y - y*z - 2*x*z - 2*x*y*z).

Crossrefs

Programs

  • Maple
    seq(simplify(2^n*hypergeom([-n, -n, n+1], [1, 1], 1/2)), n = 0..20); # Peter Bala, May 23 2025
  • Mathematica
    Table[Sum[Binomial[n, k]^2 Binomial[n + k, k] 2^(n - k), {k, 0, n}], {n, 0, 20}]
    Table[2^n HypergeometricPFQ[{-n, -n, n + 1}, {1, 1}, 1/2], {n, 0, 20}]
    Table[SeriesCoefficient[1/(1 - x - x y - y z - 2 x z - 2 x y z), {x, 0, n}, {y, 0, n}, {z, 0, n}], {n, 0, 20}]

Formula

a(n) = 2^n * hypergeom([-n, -n, n+1], [1, 1], 1/2).
From Peter Bala, May 23 2025: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k) * binomial(n, k)*binomial(2*k, n)^2.
(11*n - 16)*n^2*a(n) = 2*(77*n^3 - 189*n^2 + 132*n - 30)*a(n-1) + 4*(33*n^3 - 114*n^2 + 124*n - 40)*a(n-2) + 4*(11*n - 5)*(n - 2)^2*a(n-3) with a(0) = 1, a(1) = 4 and a(2) = 34. (End)
a(n) ~ sqrt((55 + (22*(7513 - 183*sqrt(33)))^(1/3) + (22*(7513 + 183*sqrt(33)))^(1/3)) / 33) * ((14 + (1/3)*(95958 - 1782*sqrt(33))^(1/3) + (2*(1777 + 33*sqrt(33)))^(1/3)) / 3)^n / (2*Pi*n). - Vaclav Kotesovec, Jun 07 2025

A387343 Expansion of 1/(1 - 8*x + 4*x^2)^(5/2).

Original entry on oeis.org

1, 20, 270, 3080, 31990, 312984, 2937900, 26751120, 237977190, 2078447800, 17884238372, 152002796400, 1278603975740, 10660760170480, 88213513627800, 725107271106336, 5925674432448390, 48175954959638520, 389871795632108020, 3142078444590396080, 25228464363569709396
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/(1 - 8*x + 4*x^2)^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
  • Mathematica
    CoefficientList[Series[1/(1-8*x+4*x^2)^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-8*x+4*x^2)^(5/2))
    

Formula

n*a(n) = 4*(2*n+3)*a(n-1) - 4*(n+3)*a(n-2) for n > 1.
a(n) = (binomial(n+4,2)/6) * A387339(n).
a(n) = (-1)^n * Sum_{k=0..n} (1/2)^(n-4*k) * binomial(-5/2,k) * binomial(k,n-k).
Previous Showing 11-20 of 26 results. Next