cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 101 results. Next

A055887 Number of ordered partitions of partitions.

Original entry on oeis.org

1, 1, 3, 8, 22, 59, 160, 431, 1164, 3140, 8474, 22864, 61697, 166476, 449210, 1212113, 3270684, 8825376, 23813776, 64257396, 173387612, 467856828, 1262431711, 3406456212, 9191739970, 24802339472, 66924874539, 180585336876, 487278670744, 1314838220172
Offset: 0

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Comments

Jordan matrices are upper bidiagonal matrices such that (A) the diagonal entries are in sorted order, (B) there are only 1's and 0's on the superdiagonal, (C) for each superdiagonal 1, the two diagonal entries to the left and below it must be equal. Let J(N) be the number of N X N Jordan matrices where the diagonal values are, without loss of generality, taken to be a prefix of some fixed strictly increasing sequence x_1, x_2, x_3, ... If Jordan blocks sorted by eigenvalue with ties broken by block size during the sorting, then J(1, 2, 3, ...) is this sequence. - Warren D. Smith, Jan 28 2002
Number of compositions of n into parts k >= 1 where there are A000041(k) sorts of part k. - Joerg Arndt, Sep 30 2012
Also number of chains of multisets that partition a normal multiset of weight n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Oct 28 2015
From Gus Wiseman, Jul 31 2022: (Start)
Also the number of ways to choose a multiset partition into constant multisets of a multiset of length n covering an initial interval of positive integers. This interpretation involves only multisets, not sequences. For example, the a(1) = 1 through a(3) = 8 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}}
{{1},{1}} {{1},{1,1}}
{{1},{2}} {{1},{2,2}}
{{2},{1,1}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{2}}
{{1},{2},{3}}
Factorizations into prime powers, are counted by A000688.
The strongly normal case is A063834.
The strongly normal strict case is A270995.
Twice-partitions of type PPR are counted by A279784, factorizations A295935.
The strict case is A304969.
(End)

Examples

			The a(4) = 22 chains of multisets, where notation x-y means "y is a submultiset of x", are: (o-o-o-o) (oo-o-o) (oo-oo) (ooo-o) (oooo) (oe-o-o) (ooe-o) (oooe) (oe-oe) (ooe-e) (oee-o) (ooee) (oei-o) (ooei) (oe-e-e) (oee-e) (oeee) (oei-e) (oeei) (oei-i) (oeii) (oeis).
From _Gus Wiseman_, Jul 31 2022: (Start)
a(n) is the number of ways to choose an integer partition of each part of an integer composition of n. The a(0) = 1 through a(3) = 8 choices are:
  ()  ((1))  ((2))     ((3))
             ((11))    ((21))
             ((1)(1))  ((111))
                       ((1)(2))
                       ((2)(1))
                       ((1)(11))
                       ((11)(1))
                       ((1)(1)(1))
(End)
		

Crossrefs

Row sums of A060642.
Cf. A326346.
The unordered version is A001970, row-sums of A061260.
A000041 counts integer partitions, strict A000009.
A011782 counts integer compositions.
A072233 counts partitions by sum and length.

Programs

  • Maple
    with(combstruct); SeqSetSetU := [T, {T=Sequence(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled];
    P := (x) -> product( 1/(1-x^k), k=1..20 ) - 1; F := (x) -> series( 1/(1-P(x)) - 1, x, 21 ); # F(x) is g.f. for this sequence # Warren D. Smith, Jan 28 2002
    A055887rec:= proc(n::integer) local k; option remember; with(combinat): if n = 0 then 1 else add(numbpart(k) *procname(n - k), k=1..n); end if; end proc: seq (A055887rec(n), n=0..10); # Thomas Wieder, Nov 26 2007
  • Mathematica
    a = 1/Product[(1 - x^k), {k, 1, \[Infinity]}] - 1; CoefficientList[Series[1/(1 - a), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 23 2010 *)
    (1/(2 - 1/QPochhammer[x]) + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *)
    Table[Sum[Times@@PartitionsP/@c,{c,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}] (* Gus Wiseman, Jul 31 2022 *)
  • PARI
    Vec(1/(2-1/eta(x+O(x^66)))) \\ Joerg Arndt, Sep 30 2012

Formula

Invert transform of partitions numbers A000041.
Let p(k) be the number of integer partitions of k. Furthermore, set a(0)=1. Then a(n) = Sum_{k=1..n} p(k)*a(n-k). - Thomas Wieder, Nov 26 2007
G.f.: 1/( 1 - Sum_{k>=1} p(k)*x^k ) where p(k) = A000041(k) is the number of integer partitions of k. - Joerg Arndt, Sep 30 2012
a(n) ~ c * d^n, where d = 2.698329106474211231263998666188376330713465125913986356769... (see A246828) and c = 0.414113793172792357745578049739573823627306487211379286647... - Vaclav Kotesovec, Mar 29 2014

A023893 Number of partitions of n into prime power parts (1 included); number of nonisomorphic Abelian subgroups of symmetric group S_n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 48, 63, 82, 105, 134, 171, 215, 269, 335, 415, 511, 626, 764, 929, 1125, 1356, 1631, 1953, 2333, 2776, 3296, 3903, 4608, 5427, 6377, 7476, 8744, 10205, 11886, 13818, 16032, 18565, 21463, 24768, 28536
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jul 28 2022: (Start)
The a(0) = 1 through a(6) = 10 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (33)
           (11)  (21)   (22)    (32)     (42)
                 (111)  (31)    (41)     (51)
                        (211)   (221)    (222)
                        (1111)  (311)    (321)
                                (2111)   (411)
                                (11111)  (2211)
                                         (3111)
                                         (21111)
                                         (111111)
(End)
		

Crossrefs

Cf. A009490, A023894 (first differences), A062297 (number of Abelian subgroups).
The multiplicative version (factorizations) is A000688.
Not allowing 1's gives A023894, strict A054685, ranked by A355743.
The version for just primes (not prime-powers) is A034891, strict A036497.
The strict version is A106244.
These partitions are ranked by A302492.
A000041 counts partitions, strict A000009.
A001222 counts prime-power divisors.
A072233 counts partitions by sum and length.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Map[Length,FactorInteger[#]], 1] == Length[#] &]], {n, 0, 35}] (* Geoffrey Critzer, Oct 25 2015 *)
    nmax = 50; Clear[P]; P[m_] := P[m] = Product[Product[1/(1-x^(p^k)), {k, 1, m}], {p, Prime[Range[PrimePi[nmax]]]}]/(1-x)+O[x]^nmax // CoefficientList[ #, x]&; P[1]; P[m=2]; While[P[m] != P[m-1], m++]; P[m] (* Jean-François Alcover, Aug 31 2016 *)
  • PARI
    lista(m) = {x = t + t*O(t^m); gf = prod(k=1, m, if (isprimepower(k), 1/(1-x^k), 1))/(1-x); for (n=0, m, print1(polcoeff(gf, n, t), ", "));} \\ Michel Marcus, Mar 09 2013
    
  • Python
    from functools import lru_cache
    from sympy import factorint
    @lru_cache(maxsize=None)
    def A023893(n):
        @lru_cache(maxsize=None)
        def c(n): return sum((p**(e+1)-p)//(p-1) for p,e in factorint(n).items())+1
        return (c(n)+sum(c(k)*A023893(n-k) for k in range(1,n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024

Formula

G.f.: (Product_{p prime} Product_{k>=1} 1/(1-x^(p^k))) / (1-x).

A023894 Number of partitions of n into prime power parts (1 excluded).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 15, 19, 23, 29, 37, 44, 54, 66, 80, 96, 115, 138, 165, 196, 231, 275, 322, 380, 443, 520, 607, 705, 819, 950, 1099, 1268, 1461, 1681, 1932, 2214, 2533, 2898, 3305, 3768, 4285, 4872, 5530, 6267, 7094, 8022, 9060
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jul 28 2022: (Start)
The a(0) = 1 through a(9) = 7 partitions:
  ()  .  (2)  (3)  (4)   (5)   (33)   (7)    (8)     (9)
                   (22)  (32)  (42)   (43)   (44)    (54)
                               (222)  (52)   (53)    (72)
                                      (322)  (332)   (333)
                                             (422)   (432)
                                             (2222)  (522)
                                                     (3222)
(End)
		

Crossrefs

The multiplicative version (factorizations) is A000688, coprime A354911.
Allowing 1's gives A023893, strict A106244, ranked by A302492.
The strict version is A054685.
The version for just primes is ranked by A076610, squarefree A356065.
Twice-partitions of this type are counted by A279784, factorizations A295935.
These partitions are ranked by A355743.
A000041 counts partitions, strict A000009.
A001222 counts prime-power divisors.
A072233 counts partitions by sum and length.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@PrimePowerQ/@#&]],{n,0,30}] (* Gus Wiseman, Jul 28 2022 *)
  • PARI
    is_primepower(n)= {ispower(n, , &n); isprime(n)}
    lista(m) = {x = t + t*O(t^m); gf = prod(k=1, m, if (is_primepower(k), 1/(1-x^k), 1)); for (n=0, m, print1(polcoeff(gf, n, t), ", "));}
    \\ Michel Marcus, Mar 09 2013
    
  • Python
    from functools import lru_cache
    from sympy import factorint
    @lru_cache(maxsize=None)
    def A023894(n):
        @lru_cache(maxsize=None)
        def c(n): return sum((p**(e+1)-p)//(p-1) for p,e in factorint(n).items())
        return (c(n)+sum(c(k)*A023894(n-k) for k in range(1,n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024

Formula

G.f.: Prod(p prime, Prod(k >= 1, 1/(1-x^(p^k))))

A107742 G.f.: Product_{j>=1} Product_{i>=1} (1 + x^(i*j)).

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 17, 25, 38, 59, 86, 125, 184, 260, 369, 524, 726, 1005, 1391, 1894, 2576, 3493, 4687, 6272, 8373, 11090, 14647, 19294, 25265, 32991, 42974, 55705, 72025, 92895, 119349, 152965, 195592, 249280, 316991, 402215, 508932, 642598, 809739, 1017850, 1276959, 1599015, 1997943, 2491874, 3102477, 3855165, 4782408, 5922954
Offset: 0

Views

Author

Vladeta Jovovic, Jun 11 2005

Keywords

Comments

From Gus Wiseman, Sep 13 2022: (Start)
Also the number of multiset partitions of integer partitions of n into intervals, where an interval is a set of positive integers with all differences of adjacent elements equal to 1. For example, the a(1) = 1 through a(4) = 6 multiset partitions are:
{{1}} {{2}} {{3}} {{4}}
{{1},{1}} {{1,2}} {{1},{3}}
{{1},{2}} {{2},{2}}
{{1},{1},{1}} {{1},{1,2}}
{{1},{1},{2}}
{{1},{1},{1},{1}}
Intervals are counted by A001227, ranked by A073485.
The initial version is A007294.
The strict version is A327731.
The version for gapless multisets instead of intervals is A356941.
The case of strict partitions is A356957.
Also the number of multiset partitions of integer partitions of n into distinct constant blocks. For example, the a(1) = 1 through a(4) = 6 multiset partitions are:
{{1}} {{2}} {{3}} {{4}}
{{1,1}} {{1,1,1}} {{2,2}}
{{1},{2}} {{1},{3}}
{{1},{1,1}} {{1,1,1,1}}
{{2},{1,1}}
{{1},{1,1,1}}
Constant multisets are counted by A000005, ranked by A000961.
The non-strict version is A006171.
The unlabeled version is A089259.
The non-constant block version is A261049.
The version for twice-partitions is A279786, factorizations A296131.
Also the number of multiset partitions of integer partitions of n into constant blocks of odd length. For example, a(1) = 1 through a(4) = 6 multiset partitions are:
{{1}} {{2}} {{3}} {{4}}
{{1},{1}} {{1,1,1}} {{1},{3}}
{{1},{2}} {{2},{2}}
{{1},{1},{1}} {{1},{1,1,1}}
{{1},{1},{2}}
{{1},{1},{1},{1}}
The strict version is A327731 (also).
(End)

Crossrefs

Product_{k>=1} (1 + x^k)^sigma_m(k): this sequence (m=0), A192065 (m=1), A288414 (m=2), A288415 (m=3), A301548 (m=4), A301549 (m=5), A301550 (m=6), A301551 (m=7), A301552 (m=8).
A000041 counts integer partitions, strict A000009.
A000110 counts set partitions.
A072233 counts partitions by sum and length.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j)), {i, 1, nmax}, {j, 1, nmax/i}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 04 2017 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 23 2018 *)
    nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 28 2018 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    chQ[y_]:=Length[y]<=1||Union[Differences[y]]=={1};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And@@chQ/@#&]],{n,0,5}] (* Gus Wiseman, Sep 13 2022 *)
  • PARI
    a(n)=polcoeff(prod(k=1,n,prod(j=1,n\k,1+x^(j*k)+x*O(x^n))),n) /* Paul D. Hanna */
    
  • PARI
    N=66;  x='x+O('x^N); gf=1/prod(j=0,N, eta(x^(2*j+1))); gf=prod(j=1,N,(1+x^j)^numdiv(j)); Vec(gf) /* Joerg Arndt, May 03 2008 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^(2*m)+x*O(x^n))/m)),n))} /* Paul D. Hanna, Mar 28 2009 */

Formula

Euler transform of A001227.
Weigh transform of A000005.
G.f. satisfies: log(A(x)) = Sum_{n>=1} A109386(n)/n*x^n, where A109386(n) = Sum_{d|n} d*Sum_{m|d} (m mod 2). - Paul D. Hanna, Jun 26 2005
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1-x^(2n)) /n ). - Paul D. Hanna, Mar 28 2009
G.f.: Product_{n>=1} Q(x^n) where Q(x) is the g.f. of A000009. - Joerg Arndt, Feb 27 2014
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109386(k)*a(n-k) for n > 0. - Seiichi Manyama, Jun 04 2017
Conjecture: log(a(n)) ~ Pi*sqrt(n*log(n)/6). - Vaclav Kotesovec, Aug 29 2018

Extensions

More terms from Paul D. Hanna, Jun 26 2005

A257993 Least gap in the partition having Heinz number n; index of the least prime not dividing n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Emeric Deutsch, May 18 2015

Keywords

Comments

The "least gap" of a partition is the least positive integer that is not a part of the partition. For example, the least gap of the partition [7,4,2,2,1] is 3.
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
Sum of least gaps of all partitions of m = A022567(m).
From Antti Karttunen, Aug 22 2016: (Start)
Index of the least prime not dividing n. (After a formula given by Heinz.)
Least k such that A002110(k) does not divide n.
One more than the number of trailing zeros in primorial base representation of n, A049345.
(End)
The least gap is also called the mex (minimal excludant) of the partition. - Gus Wiseman, Apr 20 2021

Examples

			a(18) = 3 because the partition having Heinz number 18 = 2*3*3 is [1,2,2], having least gap equal to 3.
		

References

  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
  • Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.

Crossrefs

Positions of 1's are A005408.
Positions of 2's are A047235.
The number of gaps is A079067.
The version for crank is A257989.
The triangle counting partitions by this statistic is A264401.
One more than A276084.
The version for greatest difference is A286469 or A286470.
A maximal instead of minimal version is A339662.
Positions of even terms are A342050.
Positions of odd terms are A342051.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709 counts partitions by sum and least difference.
A333214 lists positions of adjacent unequal prime gaps.
A339737 counts partitions by sum and greatest gap.

Programs

  • Maple
    with(numtheory): a := proc (n) local B, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: for q while member(q, B(n)) = true do  end do: q end proc: seq(a(n), n = 1 .. 150);
    # second Maple program:
    a:= n-> `if`(n=1, 1, (s-> min({$1..(max(s)+1)} minus s))(
            {map(x-> numtheory[pi](x[1]), ifactors(n)[2])[]})):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 09 2016
    # faster:
    A257993 := proc(n) local p, c; c := 1; p := 2;
    while n mod p = 0 do p := nextprime(p); c := c + 1 od: c end:
    seq(A257993(n), n=1..100); # Peter Luschny, Jun 04 2017
  • Mathematica
    A053669[n_] := For[p = 2, True, p = NextPrime[p], If[CoprimeQ[p, n], Return[p]]]; a[n_] := PrimePi[A053669[n]]; Array[a, 100] (* Jean-François Alcover, Nov 28 2016 *)
    Table[k = 1; While[! CoprimeQ[Prime@ k, n], k++]; k, {n, 100}] (* Michael De Vlieger, Jun 22 2017 *)
  • PARI
    a(n) = forprime(p=2,, if (n % p, return(primepi(p)))); \\ Michel Marcus, Jun 22 2017
  • Python
    from sympy import nextprime, primepi
    def a053669(n):
        p = 2
        while True:
            if n%p!=0: return p
            else: p=nextprime(p)
    def a(n): return primepi(a053669(n)) # Indranil Ghosh, May 12 2017
    
  • Scheme
    (define (A257993 n) (let loop ((n n) (i 1)) (let* ((p (A000040 i)) (d (modulo n p))) (if (not (zero? d)) i (loop (/ (- n d) p) (+ 1 i))))))
    ;; Antti Karttunen, Aug 22 2016
    

Formula

a(n) = A000720(A053669(n)). - Alois P. Heinz, May 18 2015
From Antti Karttunen, Aug 22-30 2016: (Start)
a(n) = 1 + A276084(n).
a(n) = A055396(A276086(n)).
A276152(n) = A002110(a(n)).
(End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=1} 1/A002110(k) = 1.705230... (1 + A064648). - Amiram Eldar, Jul 23 2022
a(n) << log n/log log n. - Charles R Greathouse IV, Dec 03 2022

Extensions

A simpler description added to the name by Antti Karttunen, Aug 22 2016

A067661 Number of partitions of n into distinct parts such that number of parts is even.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 23, 27, 32, 38, 45, 52, 61, 71, 83, 96, 111, 128, 148, 170, 195, 224, 256, 292, 334, 380, 432, 491, 556, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2049, 2291, 2560, 2859, 3189, 3554, 3959, 4404
Offset: 0

Views

Author

Naohiro Nomoto, Feb 23 2002

Keywords

Comments

Ramanujan theta functions: phi(q) (A000122), chi(q) (A000700).

Examples

			G.f. = 1 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 4*x^9 + 5*x^10 + ...
From _Gus Wiseman_, Jan 08 2021: (Start)
The a(3) = 1 through a(14) = 11 partitions (A-D = 10..13):
  21   31   32   42   43   53   54   64     65     75     76     86
            41   51   52   62   63   73     74     84     85     95
                      61   71   72   82     83     93     94     A4
                                81   91     92     A2     A3     B3
                                     4321   A1     B1     B2     C2
                                            5321   5421   C1     D1
                                                   6321   5431   5432
                                                          6421   6431
                                                          7321   6521
                                                                 7421
                                                                 8321
(End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 18 Entry 9 Corollary (2).

Crossrefs

Dominates A000009.
Numbers with these strict partitions as binary indices are A001969.
The non-strict case is A027187, ranked by A028260.
The Heinz numbers of these partitions are A030229.
The odd version is A067659, ranked by A030059.
The version for rank is A117192, with positive case A101708.
Other cases of even length:
- A024430 counts set partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A174725 counts ordered factorizations of even length.
- A332305 counts strict compositions of even length
- A339846 counts factorizations of even length.
A008289 counts strict partitions by sum and length.
A026805 counts partitions whose least part is even.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x] + QPochhammer[ x]) / 2, {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&EvenQ[Length[#]]&]],{n,0,30}] (* Gus Wiseman, Jan 08 2021 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A) + eta(x + A)) / 2, n))}; /* Michael Somos, Feb 14 2006 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+2*sqrtint(N);
    gf=sum(n=0, S, (n%2==0) * q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) );
    Vec(gf)  \\ Joerg Arndt, Apr 01 2014

Formula

G.f.: A(q) = Sum_{n >= 0} a(n) q^n = 1 + q^3 + q^4 + 2 q^5 + 2 q^6 + 3 q^7 + ... = Sum_{n >= 0} q^(n(2n+1))/(q; q){2n} [_Bill Gosper, Jun 25 2005]
Also, let B(q) = Sum_{n >= 0} A067659(n) q^n = q + q^2 + q^3 + q^4 + q^5 + 2 q^6 + ... Then B(q) = Sum_{n >= 0} q^((n+1)(2n+1))/(q; q)_{2n+1}.
Also we have the following identity involving 2 X 2 matrices:
Prod_{k >= 1} [ 1, q^k; q^k, 1 ] = [ A(q), B(q); B(q), A(q) ] [Bill Gosper, Jun 25 2005]
a(n) = (A000009(n)+A010815(n))/2. - Vladeta Jovovic, Feb 24 2002
Expansion of (1 + phi(-x)) / (2*chi(-x)) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, Feb 14 2006
a(n) + A067659(n) = A000009(n). - R. J. Mathar, Jun 18 2016
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, May 24 2018
A000009(n) = a(n) + A067659(n). - Gus Wiseman, Jan 09 2021
From Peter Bala, Feb 05 2021: (Start)
G.f.: A(x) = (1/2)*((Product_{n >= 0} 1 + x^n) + (Product_{n >= 0} 1 - x^n)).
Let B(x) denote the g.f. of A067659. Then
A(x)^2 - B(x)^2 = A(x^2) - B(x^2) = Product_{n >= 1} 1 - x^(2*n) = Sum_{n in Z} (-1)^n*x^(n*(3*n+1)).
A(x) + B(x) is the g.f. of A000009.
1/(A(x) - B(x)) is the g.f. of A000041.
(A(x) + B(x))/(A(x) - B(x)) is the g.f. of A015128.
A(x)/(A(x) + B(x)) = Sum_{n >= 0} (-1)^n*x^n^2 = (1 + theta_3(-x))/2.
B(x)/(A(x) - B(x)) is the g.f. of A014968.
A(x)/(A(x^2) - B(x^2)) is the g.f. of A027187.
B(x)/(A(x^2) - B(x^2)) is the g.f. of A027193. (End)

A236913 Number of partitions of 2n of type EE (see Comments).

Original entry on oeis.org

1, 1, 3, 6, 12, 22, 40, 69, 118, 195, 317, 505, 793, 1224, 1867, 2811, 4186, 6168, 9005, 13026, 18692, 26613, 37619, 52815, 73680, 102162, 140853, 193144, 263490, 357699, 483338, 650196, 870953, 1161916, 1544048, 2044188, 2696627, 3545015, 4644850, 6066425
Offset: 0

Views

Author

Clark Kimberling, Feb 01 2014

Keywords

Comments

The partitions of n are partitioned into four types:
EO, even # of odd parts and odd # of even parts, A236559;
OE, odd # of odd parts and even # of even parts, A160786;
EE, even # of odd parts and even # of even parts, A236913;
OO, odd # of odd parts and odd # of even parts, A236914.
A236559 and A160786 are the bisections of A027193;
A236913 and A236914 are the bisections of A027187.

Examples

			The partitions of 4 of type EE are [3,1], [2,2], [1,1,1,1], so that a(2) = 3.
type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11
EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0
OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29
EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0
OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27
From _Gus Wiseman_, Feb 09 2021: (Start)
This sequence counts even-length partitions of even numbers, which have Heinz numbers given by A340784. For example, the a(0) = 1 through a(4) = 12 partitions are:
  ()  (11)  (22)    (33)      (44)
            (31)    (42)      (53)
            (1111)  (51)      (62)
                    (2211)    (71)
                    (3111)    (2222)
                    (111111)  (3221)
                              (3311)
                              (4211)
                              (5111)
                              (221111)
                              (311111)
                              (11111111)
(End)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The ordered version is A000302.
The case of odd-length partitions of odd numbers is A160786 (A340931).
The Heinz numbers of these partitions are (A340784).
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A047993 counts balanced partitions (A106529).
A058695 counts partitions of odd numbers (A300063).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A072233 counts partitions by sum and length.
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0$3],
          `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p->
          `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]],
              [p[2], p[1], p[4], p[3]]))(b(n-i, i)))))
        end:
    a:= n-> b(2*n$2)[1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 16 2014
  • Mathematica
    z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,  OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,      OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]];
    m1 (* A236559, type EO*)
    m2 (* A160786, type OE*)
    m3 (* A236913, type EE*)
    m4 (* A236914, type OO*)
    (* Peter J. C. Moses, Feb 03 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0, 0, 0}, If[i < 1, {0, 0, 0, 0}, b[n, i - 1] + If[i > n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2] == 0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n - i, i]]]]]; a[n_] := b[2*n, 2*n][[1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[2n],EvenQ[Length[#]]&]],{n,0,15}] (* Gus Wiseman, Feb 09 2021 *)

Extensions

More terms from Alois P. Heinz, Feb 16 2014

A304969 Expansion of 1/(1 - Sum_{k>=1} q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).

Original entry on oeis.org

1, 1, 2, 5, 11, 25, 57, 129, 292, 662, 1500, 3398, 7699, 17443, 39519, 89536, 202855, 459593, 1041267, 2359122, 5344889, 12109524, 27435660, 62158961, 140828999, 319065932, 722884274, 1637785870, 3710611298, 8406859805, 19046805534, 43152950024, 97768473163
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Invert transform of A000009.
From Gus Wiseman, Jul 31 2022: (Start)
Also the number of ways to choose a multiset partition into distinct constant multisets of a multiset of length n that covers an initial interval of positive integers. This interpretation involves only multisets, not sequences. For example, the a(1) = 1 through a(4) = 11 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1},{2}} {{1},{1,1}} {{1},{1,1,1}}
{{1},{2,2}} {{1,1},{2,2}}
{{2},{1,1}} {{1},{2,2,2}}
{{1},{2},{3}} {{2},{1,1,1}}
{{1},{2},{1,1}}
{{1},{2},{2,2}}
{{1},{2},{3,3}}
{{1},{3},{2,2}}
{{2},{3},{1,1}}
{{1},{2},{3},{4}}
The non-strict version is A055887.
The strongly normal non-strict version is A063834.
The strongly normal version is A270995.
(End)

Examples

			From _Gus Wiseman_, Jul 31 2022: (Start)
a(n) is the number of ways to choose a strict integer partition of each part of an integer composition of n. The a(1) = 1 through a(4) = 11 choices are:
  ((1))  ((2))     ((3))        ((4))
         ((1)(1))  ((21))       ((31))
                   ((1)(2))     ((1)(3))
                   ((2)(1))     ((2)(2))
                   ((1)(1)(1))  ((3)(1))
                                ((1)(21))
                                ((21)(1))
                                ((1)(1)(2))
                                ((1)(2)(1))
                                ((2)(1)(1))
                                ((1)(1)(1)(1))
(End)
		

Crossrefs

Row sums of A308680.
The unordered version is A089259, non-strict A001970 (row-sums of A061260).
For partitions instead of compositions we have A270995, non-strict A063834.
A000041 counts integer partitions, strict A000009.
A072233 counts partitions by sum and length.
Cf. A279784.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(b(j)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - Sum[PartitionsQ[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[1/(2 - Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[1/(2 - 1/QPochhammer[x, x^2]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A000009(k)*x^k).
G.f.: 1/(2 - Product_{k>=1} (1 + x^k)).
G.f.: 1/(2 - Product_{k>=1} 1/(1 - x^(2*k-1))).
G.f.: 1/(2 - exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)))).
a(n) ~ c / r^n, where r = 0.441378990861652015438479635503868737167721352874... is the root of the equation QPochhammer[-1, r] = 4 and c = 0.4208931614610039677452560636348863586180784719323982664940444607322... - Vaclav Kotesovec, May 23 2018

A244991 Numbers whose greatest prime factor is a prime with an odd index; n such that A006530(n) is in A031368.

Original entry on oeis.org

2, 4, 5, 8, 10, 11, 15, 16, 17, 20, 22, 23, 25, 30, 31, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124, 125, 127, 128
Offset: 1

Views

Author

Antti Karttunen, Jul 21 2014

Keywords

Comments

Equally, numbers n for which A061395(n) is odd.
A122111 maps each one of these numbers to a unique term of A026424 and vice versa.
If the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), these are the Heinz numbers of partitions whose greatest part is odd, counted by A027193. - Gus Wiseman, Feb 08 2021

Examples

			From _Gus Wiseman_, Feb 08 2021: (Start)
The sequence of terms together with their prime indices begins:
      2: {1}           32: {1,1,1,1,1}     64: {1,1,1,1,1,1}
      4: {1,1}         33: {2,5}           66: {1,2,5}
      5: {3}           34: {1,7}           67: {19}
      8: {1,1,1}       40: {1,1,1,3}       68: {1,1,7}
     10: {1,3}         41: {13}            69: {2,9}
     11: {5}           44: {1,1,5}         73: {21}
     15: {2,3}         45: {2,2,3}         75: {2,3,3}
     16: {1,1,1,1}     46: {1,9}           77: {4,5}
     17: {7}           47: {15}            80: {1,1,1,1,3}
     20: {1,1,3}       50: {1,3,3}         82: {1,13}
     22: {1,5}         51: {2,7}           83: {23}
     23: {9}           55: {3,5}           85: {3,7}
     25: {3,3}         59: {17}            88: {1,1,1,5}
     30: {1,2,3}       60: {1,1,2,3}       90: {1,2,2,3}
     31: {11}          62: {1,11}          92: {1,1,9}
(End)
		

Crossrefs

Complement: A244990.
Looking at least instead of greatest prime index gives A026804.
The partitions with these Heinz numbers are counted by A027193.
The case where Omega is odd also is A340386.
A001222 counts prime factors.
A056239 adds up prime indices.
A300063 ranks partitions of odd numbers.
A061395 selects maximum prime index.
A066208 ranks partitions into odd parts.
A112798 lists the prime indices of each positive integer.
A340931 ranks odd-length partitions of odd numbers.

Programs

  • Mathematica
    Select[Range[100],OddQ[PrimePi[FactorInteger[#][[-1,1]]]]&] (* Gus Wiseman, Feb 08 2021 *)

Formula

For all n, A244989(a(n)) = n.

A160786 The number of odd partitions of consecutive odd integers.

Original entry on oeis.org

1, 2, 4, 8, 16, 29, 52, 90, 151, 248, 400, 632, 985, 1512, 2291, 3431, 5084, 7456, 10836, 15613, 22316, 31659, 44601, 62416, 86809, 120025, 165028, 225710, 307161, 416006, 560864, 752877, 1006426, 1340012, 1777365, 2348821, 3093095, 4059416, 5310255, 6924691
Offset: 0

Views

Author

Utpal Sarkar (doetoe(AT)gmail.com), May 26 2009

Keywords

Comments

It seems that these are partitions of odd length and sum, ranked by A340931. The parts do not have to be odd. - Gus Wiseman, Apr 06 2021

Examples

			From _Gus Wiseman_, Apr 06 2021: (Start)
The a(0) = 1 through a(4) = 16 partitions:
  (1)  (3)    (5)      (7)        (9)
       (111)  (221)    (322)      (333)
              (311)    (331)      (432)
              (11111)  (421)      (441)
                       (511)      (522)
                       (22111)    (531)
                       (31111)    (621)
                       (1111111)  (711)
                                  (22221)
                                  (32211)
                                  (33111)
                                  (42111)
                                  (51111)
                                  (2211111)
                                  (3111111)
                                  (111111111)
(End)
		

Crossrefs

Partitions with all odd parts are counted by A000009 and ranked by A066208.
This is a bisection of A027193 (odd-length partitions), which is ranked by A026424.
The case of all odd parts is counted by A078408 and ranked by A300272.
The even version is A236913, ranked by A340784.
A multiplicative version is A340102.
These partitions are ranked by A340931.
A047993 counts balanced partitions, ranked by A106529.
A058695 counts partitions of odd numbers, ranked by A300063.
A072233 counts partitions by sum and length.
A236914 counts partition of type OO, ranked by A341448.
A340385 counts partitions with odd length and maximum, ranked by A340386.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0$3],
          `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p->
          `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]],
              [p[2], p[1], p[4], p[3]]))(b(n-i, i)))))
        end:
    a:= n-> b(2*n+1$2)[2]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 16 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1, 0, 0, 0}, If[i<1, {0, 0, 0, 0}, b[n, i-1] + If[i>n, {0, 0, 0, 0}, Function[{p}, If[Mod[i, 2]==0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n-i, i]]]]]; a[n_] := b[2*n+1, 2*n+1][[2]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)
    (* Slow but easy to read *)
    a[n_] := Length@IntegerPartitions[2 n + 1, {1, 2 n + 1, 2}]
    a /@ Range[0, 25]
    (* Leo C. Stein, Nov 11 2020 *)
    (* Faster, don't build the partitions themselves *)
    (* Number of partitions of n into exactly k parts *)
    P[0, 0] = 1;
    P[n_, k_] := 0 /; ((k <= 0) || (n <= 0))
    P[n_, k_] := P[n, k] = P[n - k, k] + P[n - 1, k - 1]
    a[n_] := Sum[P[2 n + 1, k], {k, 1, 2 n + 1, 2}]
    a /@ Range[0, 40]
    (* Leo C. Stein, Nov 11 2020 *)
  • Python
    # Could be memoized for speedup
    def numoddpart(n, m=1):
        """The number of partitions of n into an odd number of parts of size at least m"""
        if n < m:
            return 0
        elif n == m:
            return 1
        else:
            # 1 (namely n = n) and all partitions of the form
            # k + even partitions that start with >= k
            return 1 + sum([numevenpart(n - k,  k) for k in range(m, n//3 + 1)])
    def numevenpart(n, m=1):
        """The number of partitions of n into an even number of parts of size at least m"""
        if n < 2*m:
            return 0
        elif n == 2*m:
            return 1
        else:
            return sum([numoddpart(n - k,  k) for k in range(m,  n//2 + 1)])
    [numoddpart(n) for n in range(1, 70, 2)]
    
  • Python
    # dict to memoize
    ps = {(0,0): 1}
    def p(n, k):
        """Number of partitions of n into exactly k parts"""
        if (n,k) in ps: return ps[(n,k)]
        if (n<=0) or (k<=0): return 0
        ps[(n,k)] = p(n-k,k) + p(n-1,k-1)
        return ps[(n,k)]
    def a(n): return sum([p(2*n+1, k) for k in range(1,2*n+3,2)])
    [a(n) for n in range(0,41)]
    # Leo C. Stein, Nov 11 2020

Formula

a(n) = A027193(2n+1).
Previous Showing 11-20 of 101 results. Next