cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A086237 Decimal expansion of Porter's constant.

Original entry on oeis.org

1, 4, 6, 7, 0, 7, 8, 0, 7, 9, 4, 3, 3, 9, 7, 5, 4, 7, 2, 8, 9, 7, 7, 9, 8, 4, 8, 4, 7, 0, 7, 2, 2, 9, 9, 5, 3, 4, 4, 9, 9, 0, 3, 3, 2, 2, 4, 1, 4, 8, 8, 7, 7, 7, 7, 3, 9, 9, 6, 8, 5, 8, 1, 7, 6, 1, 6, 6, 0, 6, 7, 4, 4, 3, 2, 9, 0, 4, 4, 8, 0, 8, 4, 3, 0, 3, 6, 9, 3, 2, 7, 5, 1, 1, 1, 7, 4, 0, 1, 5, 2, 1, 2, 6, 6
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2003

Keywords

Comments

In his 'Addendum' to his paper in the year 2000 Don Knuth writes: "Gustav Lochs deserves to be mentioned here, because his work preceded that of Porter by nearly 15 years and involved essentially the same constant. Perhaps we should [..] refer in future to the Lochs-Porter constant, instead of simply saying 'Porter's constant'." - Peter Luschny, Aug 26 2014
The average number of divisions required by the Euclidean algorithm, for a coprime pair of independently and uniformly chosen numbers in the range [1, N] is (12*log(2)/Pi^2) * log(N) + c + O(N^(e-1/6)), for any e>0, where c is this constant (Porter, 1975). - Amiram Eldar, Aug 27 2020

Examples

			1.4670780794339754728977984847072299534499033224148...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, p. 157
  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 113.

Crossrefs

Programs

  • Mathematica
    RealDigits[(6 Log[2] (48 Log[Glaisher] - Log[2] - 4 Log[Pi] - 2))/Pi^2 - 1/2, 10, 110][[1]] (* Eric W. Weisstein, Aug 22 2013 *)
    RealDigits[(6 Log[2] (Pi^2 (-2 + 4 EulerGamma + Log[8]) - 24 Zeta'[2]))/Pi^4 - 1/2, 10, 110][[1]] (* Eric W. Weisstein, Aug 22 2013 *)
  • PARI
    x=.25^default(realprecision)
    (6*log(2)*(4-48*(zeta(-1+x)-zeta(-1))/x-log(2)-4*log(Pi)-2))/Pi^2 - 1/2 \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    (6*log(2)*(4-48*zeta'(-1)-log(2)-4*log(Pi)-2))/Pi^2-1/2 \\ Charles R Greathouse IV, Dec 12 2013
    
  • PARI
    6*log(2)/Pi^2*(3*log(2) + 4*Euler - 24/Pi^2*zeta'(2) - 2) - 1/2 \\ Michel Marcus, Aug 27 2014

Formula

Equals 6*(log(2)/Pi^2)*(3*log(2) + 4*Gamma -(24/Pi^2)*Zeta'(2) - 2) - 1/2.
Equals 6*log(2)*(48*log(A074962) - 4*log(Pi) - log(2) - 2)/Pi^2 - 1/2 (see Finch). - Stefano Spezia, Dec 01 2024

A340440 Decimal expansion of Sum_{k>=2} log(k)/(k^2-1).

Original entry on oeis.org

1, 0, 2, 3, 1, 3, 8, 7, 2, 6, 4, 2, 7, 9, 3, 9, 2, 9, 5, 5, 3, 5, 0, 8, 8, 0, 7, 6, 9, 7, 5, 2, 1, 8, 0, 9, 7, 4, 9, 2, 1, 4, 5, 2, 7, 9, 3, 6, 6, 0, 8, 3, 2, 5, 9, 3, 6, 6, 3, 4, 8, 6, 1, 7, 9, 1, 2, 1, 6, 5, 3, 1, 9, 2, 2, 8, 5, 2, 3, 2, 7, 8, 9, 2, 2, 7, 5, 3, 1, 9, 7, 2, 4, 1, 2, 1, 7, 0, 8, 7, 5, 0, 1, 0, 7
Offset: 1

Views

Author

R. J. Mathar, Jan 07 2021

Keywords

Examples

			1.0231387264279392955...
		

Crossrefs

Programs

Formula

Equals Sum_{i>=1} -zeta'(2i) = A073002 + A261506 - Sum_{i>=3} zeta'(2i).
Sum_{k>=2} log(k)/(k^2-s) = -Sum_{i>=1} s^(i-1)*zeta'(2i) for |s|<4. - R. J. Mathar, May 03 2021
Equals log(2)/2 + Sum_{k>=1} (zeta(2*k)-1)/(2*k-1). - Amiram Eldar, Jun 08 2021

A373059 a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, n)/gcd(x_1, x_2, n).

Original entry on oeis.org

1, 5, 13, 25, 41, 65, 85, 121, 157, 205, 221, 325, 313, 425, 533, 569, 545, 785, 685, 1025, 1105, 1105, 1013, 1573, 1441, 1565, 1777, 2125, 1625, 2665, 1861, 2617, 2873, 2725, 3485, 3925, 2665, 3425, 4069, 4961, 3281, 5525, 3613, 5525, 6437, 5065, 4325, 7397, 5965
Offset: 1

Views

Author

Seiichi Manyama, May 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 27 2024 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, gcd(i, n)/gcd([i, j, n])));
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2);} \\ Amiram Eldar, May 27 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * (n/d) * sigma_2(d^2)/sigma(d^2).
From Amiram Eldar, May 27 2024: (Start)
Multiplicative with a(p^e) = (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2.
Dirichlet g.f.: zeta(s) * zeta(s-2)^2 / zeta(s-1)^2.
Sum_{k=1..n} a(k) ~ (2*zeta(3)*n^3/(15*zeta(4))) * (log(n) + 2*gamma - 1/3 - 2*zeta'(2)/zeta(2) + zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620). (End)

A115522 Decimal expansion of (Glaisher^12/(2*Pi*e^EulerGamma))^(Pi^2/6).

Original entry on oeis.org

2, 5, 5, 3, 7, 1, 2, 6, 8, 2, 7, 4, 8, 2, 0, 9, 0, 5, 2, 9, 3, 9, 3, 1, 4, 5, 7, 4, 4, 4, 0, 9, 6, 4, 0, 7, 8, 6, 6, 7, 1, 5, 1, 0, 3, 8, 2, 1, 4, 8, 1, 7, 1, 2, 8, 1, 3, 5, 3, 6, 0, 1, 3, 4, 5, 9, 6, 6, 9, 8, 2, 5, 8, 4, 5, 6, 9, 0, 6, 2, 7, 7, 1, 0, 6, 1, 1, 7, 3, 7, 6, 5, 3, 5, 4, 4, 3, 6, 7, 5, 3, 4, 5, 3, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jan 25 2006

Keywords

Examples

			2.5537126827482090529...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 135.

Crossrefs

Programs

Formula

Equals Product_{k>=1} k^(1/k^2). - Vaclav Kotesovec, Dec 10 2017
Equals (Product_{k>=1} prime(k)^(1/(prime(k)^2-1)))^(Pi^2/6) (Van Gorder, 2012). - Amiram Eldar, Jul 22 2022
Equals exp(-zeta'(2)). - Vaclav Kotesovec, Jun 22 2023

A129364 a(n) = Product_{k = 1..n} A066841(k).

Original entry on oeis.org

1, 2, 6, 96, 480, 207360, 1451520, 2972712960, 722369249280, 5778953994240000, 63568493936640000, 9111096278347394580480000, 118444251618516129546240000, 10400352846118664303196241920000
Offset: 1

Views

Author

Peter Bala, Apr 11 2007

Keywords

Comments

Conjecture: a(n) divides A092287(n) for all n - see comments in A129365.

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[n/k]!^k, {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jun 24 2021 *)
    Table[Product[k^(Floor[n/k]*(1 + Floor[n/k])/2), {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jun 24 2021 *)
  • PARI
    a(n) = prod(k=1, n, k^((n\k) * (1 + n\k) \ 2)); \\ Daniel Suteu, Sep 12 2018

Formula

a(n) = Product_{k = 1..n} Product_{d|k} d^(k/d).
a(n) = Product_{k = 1..n} ((floor(n/k))!)^k.
a(n) = exp(Sum_{k = 1..n} log(k)/2 * floor(n/k) * floor(1 + n/k)). - Daniel Suteu, Sep 12 2018
log(a(n)) ~ c * n^2, where c = -zeta'(2)/2 = A073002/2 = 0.468774... - Vaclav Kotesovec, Jun 24 2021

A174466 a(n) = Sum_{d|n} d*sigma(n/d)*tau(d).

Original entry on oeis.org

1, 7, 10, 31, 16, 70, 22, 111, 64, 112, 34, 310, 40, 154, 160, 351, 52, 448, 58, 496, 220, 238, 70, 1110, 166, 280, 334, 682, 88, 1120, 94, 1023, 340, 364, 352, 1984, 112, 406, 400, 1776, 124, 1540, 130, 1054, 1024, 490, 142, 3510, 316, 1162, 520, 1240
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Compare to sigma_2(n) = Sum_{d|n} d*sigma(n/d)*phi(d) = sum of squares of divisors of n.
tau(n) = A000005(n) = the number of divisors of n,
and sigma(n) = A000203(n) = sum of divisors of n.
Dirichlet convolution of A038040 and A000203. - R. J. Mathar, Feb 06 2011

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A007425 (tau_3), A034718, A038040, A174465.

Programs

  • Haskell
    a174466 n = sum $ zipWith3 (((*) .) . (*))
                      divs (map a000203 $ reverse divs) (map a000005 divs)
                      where divs = a027750_row n
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [&+[d*DivisorSigma(1, n div d)*#Divisors(d):d in Divisors(n)]:n in [1..55]]; // Marius A. Burtea, Oct 18 2019
  • Mathematica
    f[p_, e_] := ((e^2+3*e+2)*p^(e+3) - 2*(e^2+4*e+3)*p^(e+2) + (e^2+5*e+6)*p^(e+1) - 2)/(2*(p-1)^3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2025 *)
  • PARI
    {a(n)=sumdiv(n,d,d*sigma(n/d)*sigma(d,0))}
    

Formula

Logarithmic derivative of A174465.
Dirichlet g.f.: zeta(s)*(zeta(s-1))^3. - R. J. Mathar, Feb 06 2011
a(n) = Sum_{d|n} tau_3(d)*d = Sum_{d|n} A007425(d)*d. - Enrique Pérez Herrero, Jan 17 2013
G.f.: Sum_{k>=1} k*tau_3(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 06 2018
Sum_{k=1..n} a(k) ~ Pi^2*n^2/24 * (log(n)^2 + ((6*g - 1) + 12*z1/Pi^2) * log(n) + (1 - 6*g + 12*g^2 - 12*sg1)/2 + 6*((6*g - 1)*z1 + z2)/Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(p^e) = ((e^2+3*e+2)*p^(e+3) - 2*(e^2+4*e+3)*p^(e+2) + (e^2+5*e+6)*p^(e+1) - 2)/(2*(p-1)^3). - Amiram Eldar, May 26 2025

A245074 Decimal expansion of B, the coefficient of n*log(n)^2 in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.

Original entry on oeis.org

7, 4, 4, 3, 4, 1, 2, 7, 6, 3, 9, 1, 4, 5, 6, 6, 4, 0, 4, 3, 9, 0, 0, 6, 0, 3, 6, 7, 8, 5, 6, 9, 4, 6, 1, 5, 6, 9, 1, 3, 7, 7, 8, 0, 8, 8, 3, 9, 4, 2, 7, 0, 4, 7, 5, 8, 5, 2, 9, 2, 0, 9, 4, 8, 7, 7, 3, 6, 4, 0, 8, 4, 0, 1, 4, 8, 2, 5, 8, 4, 1, 6, 2, 0, 5, 7, 0, 1, 9, 8, 7, 4, 8, 8, 7, 1, 8, 5, 0, 0, 9, 4, 5
Offset: 0

Views

Author

Jean-François Alcover, Jul 11 2014

Keywords

Comments

The coefficient of n*log(n)^3 in the same asymptotic formula is A = 1/Pi^2.

Examples

			0.744341276391456640439006036785694615691377808839427047585292094877364...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section Sierpinski's Constant, p. 124.

Crossrefs

Programs

  • Mathematica
    B = (12*EulerGamma - 3)/Pi^2 - (36/Pi^4)*Zeta'[2]; RealDigits[B, 10, 103] // First
  • PARI
    (4*Euler-1)/(2*zeta(2)) - zeta'(2)/zeta(2)^2 \\ Amiram Eldar, Apr 27 2025

Formula

B = (12*gamma - 3)/Pi^2 - (36/Pi^4)*zeta'(2).

A319090 Decimal expansion of C, the coefficient of n*log(n) in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.

Original entry on oeis.org

8, 2, 3, 2, 6, 5, 2, 0, 8, 2, 6, 9, 4, 8, 5, 0, 2, 0, 1, 5, 6, 8, 1, 6, 4, 5, 3, 9, 4, 7, 0, 9, 0, 4, 0, 6, 3, 0, 1, 2, 7, 3, 2, 7, 0, 3, 2, 1, 1, 4, 2, 2, 5, 0, 8, 9, 2, 5, 2, 4, 5, 7, 9, 2, 0, 8, 5, 3, 0, 3, 9, 5, 9, 7, 1, 7, 5, 5, 0, 4, 2, 1, 8, 1, 7, 0, 8, 2, 1, 3, 3, 7, 2, 4, 6, 9, 7, 7, 1, 2, 8, 2, 3, 0, 2, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Examples

			0.823265208269485020156816453947090406301273270321142250892524579208530395971755...
		

Crossrefs

Programs

  • Mathematica
    36*EulerGamma^2/Pi^2 - (288*Zeta'[2]/Pi^4 + 24/Pi^2)*EulerGamma + (864*Zeta'[2]^2/Pi^6 + 72*Zeta'[2]/Pi^4 - 72/Pi^4*Zeta''[2] + 6/Pi^2) - 24*StieltjesGamma[1]/Pi^2

Formula

C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994 and g1 is the first Stieltjes constant, see A082633.

A319091 Decimal expansion of D, the coefficient of n in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.

Original entry on oeis.org

4, 6, 0, 3, 2, 3, 3, 7, 2, 2, 5, 8, 7, 2, 1, 4, 3, 0, 3, 9, 3, 7, 6, 2, 0, 8, 6, 3, 8, 4, 4, 1, 8, 9, 7, 4, 7, 6, 3, 2, 1, 4, 9, 0, 3, 5, 3, 8, 7, 3, 9, 2, 2, 4, 0, 5, 8, 4, 2, 5, 0, 3, 4, 8, 4, 4, 5, 9, 0, 2, 6, 2, 9, 3, 2, 4, 0, 3, 2, 0, 7, 3, 8, 0, 1, 9, 8, 4, 8, 1, 0, 7, 6, 5, 9, 8, 5, 9, 9, 7, 3, 5, 6, 9, 5, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Examples

			0.4603233722587214303937620863844189747632149035387392240584250348445902629324...
		

Crossrefs

Programs

  • Mathematica
    24*EulerGamma^3/Pi^2 - (432*Zeta'[2] /Pi^4+ 36/Pi^2)*EulerGamma^2 + (3456*Zeta'[2]^2/Pi^6 + 288*(Zeta'[2]-Zeta''[2])/Pi^4 + 24/Pi^2 - 72*StieltjesGamma[1]/Pi^2)*EulerGamma + StieltjesGamma[1]*(288*Zeta'[2]/Pi^4 + 24/Pi^2)-10368*Zeta'[2]^3/Pi^8 - 864*Zeta'[2]^2/Pi^6 + 1728*Zeta''[2] * Zeta'[2]/Pi^6 + 72*(Zeta''[2]-Zeta'[2])/Pi^4 - 48*Zeta'''[2]/Pi^4 + (12*StieltjesGamma[2] - 6)/Pi^2

Formula

D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279.

A320896 a(n) = Sum_{k=1..n} k * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 9, 21, 57, 77, 173, 201, 329, 410, 570, 614, 1046, 1098, 1322, 1562, 1962, 2030, 2678, 2754, 3474, 3810, 4162, 4254, 5790, 6015, 6431, 6863, 7871, 7987, 9907, 10031, 11183, 11711, 12255, 12815, 15731, 15879, 16487, 17111, 19671, 19835, 22523, 22695, 24279
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^2 * (3*(Pi^6*(-1 - 24*g^2 + 32*g^3 + g*(8 - 96*s1) + 16*s1 + 16*s2) - 13824*z1^3 + 576*Pi^2*z1*((-1 + 8*g)*z1 + 4*z2) - 8*Pi^4*(3*(1 - 8*g + 24*g^2 - 16*s1)*z1 - 6*z2 + 48*g*z2 + 8*z3)) + 6*(Pi^6*(1 - 8*g + 24*g^2 - 16*s1) + 576*Pi^2*z1^2 - 24*Pi^4*(-z1 + 8*g*z1 + 2*z2))*log(n) + 6*((-1 + 8*g)*Pi^6 - 24*Pi^4*z1)*log(n)^2 + 4*Pi^6*log(n)^3) / (8*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.
Previous Showing 21-30 of 59 results. Next