cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A269296 Decimal expansion of Sum_{k>=0} 1/(5k)!.

Original entry on oeis.org

1, 0, 0, 8, 3, 3, 3, 6, 0, 8, 9, 0, 7, 2, 9, 0, 2, 8, 9, 9, 7, 6, 4, 5, 3, 6, 6, 7, 3, 5, 4, 8, 3, 8, 7, 8, 6, 0, 7, 1, 0, 7, 7, 2, 8, 1, 5, 7, 9, 5, 4, 3, 1, 0, 2, 0, 0, 3, 0, 5, 9, 0, 7, 4, 9, 2, 7, 0, 7, 5, 5, 0, 4, 8, 4, 8, 1, 1, 1, 0, 8, 4, 1, 1, 4, 8, 5, 5, 9, 4, 1, 6, 1, 7, 0, 0, 6, 5, 7, 8, 1, 9, 2, 5, 2, 6, 8, 9, 9, 1, 9, 4, 6, 9, 7, 5, 7, 7, 4, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2016

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2016: (Start)
Sum_{k>=0} 1/k! = A001113 = exp(1).
Sum_{k>=0} 1/(2k)! = A073743 = cosh(1).
Sum_{k>=0} 1/(3k)! = A143819 = (2*cos(sqrt(3)/2)*exp(-1/2) + exp(1))/3.
Sum_{k>=0} 1/(4k)! = (cos(1) + cosh(1))/2 = 1.0416914703416917479394211141...
(End)
For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity. - Bernard Schott, Mar 02 2020
Continued fraction: 1 + 1/(120 - 120/(30241 - 30240/(360361 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (5*n)*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Examples

			1 + 1/5! + 1/10! + 1/15! + ... = 1.008333608907290289976453667354838786...
		

Crossrefs

Cf. A100734.
Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), this sequence (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf((exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5, 120); # Vaclav Kotesovec, Feb 24 2016
  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, 1/3125], 10, 120][[1]]
  • PARI
    suminf(k=0, 1/(5*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals Sum_{k>=0} 1/A100734(k).
Equals (exp(1) + exp(-(-1)^(1/5)) + exp((-1)^(2/5)) + exp(-(-1)^(3/5)) + exp((-1)^(4/5)))/5.
Equals (exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5. - Vaclav Kotesovec, Feb 24 2016
Sum_{k>=0} (-1)^k / (5*k)! = (exp(-1) + 2*cos(5^(1/4)/(2*sqrt(phi))) * exp(phi/2) + 2*cos(5^(1/4)*sqrt(phi)/2) / exp(1/(2*phi)))/5 = 0.99166694223909419..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 02 2020

A275651 a(n) = (2*n)!*Sum_{k = 0..n} (-1)^k/(2*k)!.

Original entry on oeis.org

1, 1, 13, 389, 21785, 1960649, 258805669, 47102631757, 11304631621681, 3459217276234385, 1314502564969066301, 607300185015708631061, 335229702128671164345673
Offset: 0

Views

Author

Peter Bala, Sep 02 2016

Keywords

Comments

Compare with the derangement numbers A000166(n) := n!*sum_{k = 0..n} (-1)^k/k! and also A074790.

Crossrefs

Programs

  • Maple
    A275651 := proc(n) option remember; if (n = 0) then 1 else 2*n*(2*n - 1)*A275651(n-1)+(-1)^n end if; end proc:
    seq(A275651(n), n = 0..20);
  • Mathematica
    Table[(2 n)!*Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 12}] (* Michael De Vlieger, Sep 04 2016 *)

Formula

a(n) ~ (2*n)!*cos(1).
E.g.f. for the aerated sequence: cos(x)/(1 - x^2) = 1 + x^2/2! + 13*x^4/4! + 389*x^6/6! + ....
Recurrence equations:
a(n) = 2*n*(2*n - 1)*a(n-1) + (-1)^n with a(0) = 1.
a(n) = (4*n^2 - 2*n - 1)*a(n - 1) + (2*n - 2)*(2*n - 3)*a(n - 2) with a(0) = 1, a(1) = 1.
The latter recurrence is also satisfied by the sequence b(n) := (2*n)! with b(0) = 1, b(1) = 2. This leads to the continued fraction representation a(n) = (2*n )!*( 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/(4*n^2 - 2*n - 1) )))) ) for n >= 3. Taking the limit gives the continued fraction representation cos(1) = A049470 = 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/((4*n^2 - 2*n - 1) + ... ))))). Cf. A073743.

A332892 Decimal expansion of Sum_{k>=0} 1/(6*k)!.

Original entry on oeis.org

1, 0, 0, 1, 3, 8, 8, 8, 9, 0, 9, 7, 6, 5, 6, 4, 7, 4, 3, 8, 6, 7, 7, 7, 0, 0, 8, 4, 4, 0, 9, 7, 3, 7, 4, 0, 9, 2, 7, 8, 6, 5, 6, 1, 7, 3, 5, 5, 5, 7, 8, 1, 1, 4, 2, 0, 0, 6, 7, 9, 3, 1, 7, 0, 3, 1, 8, 8, 5, 3, 1, 1, 5, 4, 2, 0, 9, 6, 3, 8, 9, 7, 8, 4, 4, 0, 8
Offset: 1

Views

Author

Bernard Schott, Mar 02 2020

Keywords

Comments

For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity.

Examples

			1.001388890976564743867770084409737409278656173555781142...
		

References

  • Serge Francinou, Hervé Gianella, Serge Nicolas, Exercices de Mathématiques, Oraux X-ENS, Analyse 2, problème 3.10, p. 182, Cassini, Paris, 2004

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), this sequence (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf(sum(1/(6*n)!,n=0..infinity),150);
  • Mathematica
    RealDigits[(1/3)*(Cosh[1] + 2*Cosh[1/2]*Cos[Sqrt[3]/2]), 10, 120][[1]] (* Amiram Eldar, May 31 2023 *)
  • PARI
    sumpos(k=0, 1/(6*k)!) \\ Michel Marcus, Mar 02 2020

Formula

Equals (1/3) * (cosh(1) + 2*cosh(1/2)*cos((sqrt(3))/2)).
Sum_{k>=0} (-1)^k / (6*k)! = (cos(1) + 2*cos(1/2)*cosh(sqrt(3)/2))/3 = 0.9986111131987866537... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(720 - 720/(665281 - 665280/(13366081 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (6*n)*(6*n - 1)*(6*n - 2)*(6*n - 3)*(6*n - 4)*(6*n - 5) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

A334364 Decimal expansion of Sum_{k>=0} 1/(4*k+2)!.

Original entry on oeis.org

5, 0, 1, 3, 8, 9, 1, 6, 4, 4, 7, 3, 5, 5, 2, 0, 3, 0, 5, 3, 8, 4, 8, 4, 5, 0, 6, 6, 5, 7, 0, 4, 2, 5, 3, 9, 4, 3, 4, 6, 0, 9, 3, 4, 5, 8, 7, 3, 9, 7, 0, 7, 3, 8, 5, 3, 3, 6, 5, 2, 4, 7, 9, 6, 6, 4, 8, 3, 4, 3, 3, 4, 1, 3, 7, 3, 7, 5, 9, 6, 7, 2, 2, 3, 1, 5, 6, 4, 3, 5, 1, 7, 4, 1, 7, 9, 9, 7, 3, 1, 2, 1, 7, 3, 7, 5, 6, 3, 7, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Examples

			1/2! + 1/6! + 1/10! + ... = 0.5013891644735520305...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Cosh[1] - Cos[1])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/(4*k+2)!) \\ Michel Marcus, Apr 25 2020

Formula

Equals (cosh(1) - cos(1))/2.

A078982 Denominators of continued fraction convergents to cosh(1).

Original entry on oeis.org

1, 1, 2, 11, 35, 116, 267, 383, 8310, 8693, 17003, 25696, 119787, 265270, 385057, 18748006, 1331493483, 9339202387, 10670695870, 20009898257, 190759780183, 210769678440, 612299137063, 823068815503, 9666056107596, 10489124923099
Offset: 0

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Cf. A068118 (continued fraction), A073743 (decimal expansion), A078983 (numerators).

Programs

  • Mathematica
    Denominator[Convergents[Cosh[1],30]] (* Harvey P. Dale, Jul 22 2014 *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(cosh(1),n+1)),1),2)

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024

A078983 Numerators of continued fraction convergents to cosh(1).

Original entry on oeis.org

1, 2, 3, 17, 54, 179, 412, 591, 12823, 13414, 26237, 39651, 184841, 409333, 594174, 28929685, 2054601809, 14411142348, 16465744157, 30876886505, 294357722702, 325234609207, 944826941116, 1270061550323, 14915503994669, 16185565544992
Offset: 0

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Cf. A068118 (continued fraction), A073743 (decimal expansion), A078982 (denominators).

Programs

  • Mathematica
    Numerator[Convergents[Cosh[1],30]] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(cosh(1),n+1)),1),1)

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024

A107991 Complexity (number of maximal spanning trees) in an unoriented simple graph with nodes {1,2,...,n} and edges {i,j} if i + j > n.

Original entry on oeis.org

1, 1, 1, 3, 8, 40, 180, 1260, 8064, 72576, 604800, 6652800, 68428800, 889574400, 10897286400, 163459296000, 2324754432000, 39520825344000, 640237370572800, 12164510040883200, 221172909834240000, 4644631106519040000, 93666727314800640000
Offset: 1

Views

Author

Roland Bacher, Jun 13 2005

Keywords

Comments

Proof of the formula: check that the associated combinatorial Laplacian has eigenvalues {0,..n-1}\ {floor((n+1)/2)} by exhibiting a basis of eigenvectors (which are very simple).

Examples

			a(1)=a(2)=a(3)=1 because the corresponding graphs are trees.
a(4)=3 because the corresponding graph is a triangle with one of its vertices adjacent to a fourth vertex.
		

References

  • N. Biggs, Algebraic Graph Theory, Cambridge University Press (1974).

Crossrefs

Programs

  • GAP
    List([1..20],n->Factorial(n-1)/Int((n+1)/2)); # Muniru A Asiru, Dec 15 2018
    
  • Magma
    [Factorial(n-1)/Floor((n+1)/2): n in [1..25]]; // Vincenzo Librandi, Dec 15 2018
    
  • Maple
    a:=n->(n-1)!/floor((n+1)/2);
  • Mathematica
    Function[x, 1/x] /@
    CoefficientList[Series[3*Exp[x]/4 + 1/4*Exp[-x] + x/2*Exp[x], {x, 0, 10}], x] (* Pierre-Alain Sallard, Dec 15 2018 *)
    Table[(n - 1)! / Floor[(n + 1) / 2], {n, 1, 30}] (* Vincenzo Librandi, Dec 15 2018 *)
  • PARI
    A107991(n)=(n-1)!/round(n/2) \\ M. F. Hasler, Apr 21 2015
    
  • SageMath
    [factorial(n-1)/floor((n+1)/2) for n in range(1,24)] # Stefano Spezia, May 10 2024

Formula

a(n) = (n-1)!/floor((n+1)/2).
a(n+1) = n!/floor(n/2 + 1). - M. F. Hasler, Apr 21 2015
1/a(n+1) is the coefficient of the power series of 3*exp(x)/4 + 1/4*exp(-x) + x/2*exp(x) ; this function is the sum of f_n(x) where f_0(x)=cosh(x) and f_{n+1} is the primitive of f_n. - Pierre-Alain Sallard, Dec 15 2018
Sum_{n>=1} 1/a(n) = (e + sinh(1))/2 + cosh(1). - Amiram Eldar, Aug 15 2025

A334379 Decimal expansion of Sum_{k>=0} 1/((2*k)!)^2.

Original entry on oeis.org

1, 2, 5, 1, 7, 3, 8, 0, 4, 0, 7, 3, 8, 6, 5, 1, 4, 6, 7, 7, 4, 4, 5, 1, 5, 9, 4, 7, 7, 3, 0, 7, 4, 0, 9, 8, 9, 5, 5, 5, 4, 9, 7, 7, 9, 2, 5, 0, 2, 0, 3, 3, 3, 2, 8, 5, 9, 9, 5, 9, 4, 7, 2, 8, 8, 3, 7, 5, 7, 9, 6, 5, 0, 5, 0, 0, 3, 4, 3, 5, 2, 3, 8, 7, 2, 1, 6, 4, 3, 0, 0, 2, 0, 4, 9, 5, 7, 6, 3, 2, 5, 1, 6, 9, 1, 6, 2, 8, 2, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/0!^2 + 1/2!^2 + 1/4!^2 + 1/6!^2 + ... = 1.25173804073865146774451594773...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 2] + BesselJ[0, 2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/((2*k)!)^2) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    (besseli(0,2) + besselj(0,2))/2 \\ Michel Marcus, Apr 26 2020

Formula

Equals (BesselI(0,2) + BesselJ(0,2))/2.
Continued fraction: 1 + 1/(4 - 4/(145 - 144/(901 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (2*n*(2*n - 1))^2. - Peter Bala, Feb 22 2024

A334402 Decimal expansion of cosh(Pi).

Original entry on oeis.org

1, 1, 5, 9, 1, 9, 5, 3, 2, 7, 5, 5, 2, 1, 5, 2, 0, 6, 2, 7, 7, 5, 1, 7, 5, 2, 0, 5, 2, 5, 6, 0, 1, 3, 7, 6, 9, 5, 7, 7, 0, 9, 1, 7, 1, 7, 6, 2, 0, 5, 4, 2, 2, 5, 3, 8, 2, 1, 2, 8, 8, 3, 0, 4, 8, 4, 6, 2, 6, 9, 6, 5, 5, 8, 2, 2, 3, 7, 3, 5, 3, 7, 5, 6, 0, 7, 5, 5, 5, 9, 7, 8, 5, 1, 4, 7, 2, 5, 1, 5, 2, 0, 3, 1, 4, 8, 4, 7, 5, 5
Offset: 2

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Comments

This constant is transcendental.

Examples

			(e^Pi + e^(-Pi))/2 = 11.5919532755215206277517520525601...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[Pi], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} Pi^(2*k)/(2*k)!.
Equals Product_{k>=0} (1 + 4/(2*k+1)^2).
Equals Product_{k>=1} (k^2 + 4)/(k^2 + 1). - Amiram Eldar, Aug 09 2020

A344419 a(n) = n*a(n-1) + n^(n mod 2), a(0) = 0.

Original entry on oeis.org

0, 1, 3, 12, 49, 250, 1501, 10514, 84113, 757026, 7570261, 83272882, 999274585, 12990569618, 181867974653, 2728019619810, 43648313916961, 742021336588354, 13356384058590373, 253771297113217106, 5075425942264342121, 106583944787551184562, 2344846785326126060365
Offset: 0

Views

Author

Alois P. Heinz, May 17 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(n mod 2) end: a(0):= 0:
    seq(a(n), n=0..23);

Formula

E.g.f.: ((x+1)*cosh(x)-1)/(1-x).
a(n) = A344262(n) - n! = A344262(n) - A000142(n).
a(n) = A344418(n) - A155521(n-1) for n > 0.
Lim_{n->infinity} a(n)/n! = 2*cosh(1)-1 = 2*A073743-1 = e+1/e-1 = A137204-1. - Amrit Awasthi, May 20 2021
Previous Showing 21-30 of 42 results. Next