cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 113 results. Next

A049599 Number of (1+e)-divisors of n: if n = Product p(i)^r(i), d = Product p(i)^s(i) and s(i) = 0 or s(i) divides r(i), then d is a (1+e)-divisor of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 6, 2, 12, 4, 6, 4, 4, 4, 6, 2, 6, 6, 9, 2, 8, 2
Offset: 1

Views

Author

Keywords

Comments

A divisor of n is a (1+e)-divisor if and only if it is a unitary divisor of an exponential divisor of n (see A077610 and A322791). - Amiram Eldar, Feb 26 2024

Crossrefs

Programs

  • Haskell
    a049599 = product . map ((+ 1) . a000005 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Mathematica
    a[n_] := Times @@ (DivisorSigma[0, #] + 1 &)  /@ FactorInteger[n][[All, 2]]; a[1] = 1; Table[a[n], {n, 1, 103}] (* Jean-François Alcover, Oct 10 2011 *)
  • PARI
    a(n) = vecprod(apply(x->numdiv(x)+1, factor(n)[, 2])); \\ Amiram Eldar, Aug 13 2023

Formula

If n = Product p(i)^r(i) then a(n) = Product (tau(r(i))+1), where tau(n) = number of divisors of n, cf. A000005. - Vladeta Jovovic, Apr 29 2001

Extensions

More terms from Naohiro Nomoto, Apr 12 2001

A165430 Table T(n,m) read by rows: the greatest common unitary divisor of n and m, n>=1, 1<=m<=n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 2, 3, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 2, 1, 1, 5, 2, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 3, 4, 1, 3, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 2, 1, 1, 1, 2, 7, 1, 1, 2, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Sep 18 2009

Keywords

Comments

The maximum number which appears in row n and also in row m of A077610. The sequence of the counts of 1 in row n=1,2,3,... is 1, 1, 2, 3, 4, 3, 6, 7, 8, 6, 10, 8, 12, 9, 9,...

Examples

			The table starts
1;
1,2
1,1,3
1,1,1,4
1,1,1,1,5
1,2,3,1,1,6
1,1,1,1,1,1,7
1,1,1,1,1,1,1,8
1,1,1,1,1,1,1,1,9
1,2,1,1,5,2,1,1,1,10
		

Crossrefs

Cf. A034444, A275254 (row sums)

Programs

  • Haskell
    import Data.List (intersect)
    a165430 n k = last (a077610_row n `intersect` a077610_row k)
    a165430_row n = map (a165430 n) [1..n]
    a165430_tabl = map a165430_row [1..]
    -- Reinhard Zumkeller, Mar 04 2013
    
  • Maple
    A077610 := proc(n) local a; a := {} ; for d in numtheory[divisors](n) do if gcd(d,n/d) = 1 then a := a union {d} ; fi; od: a; end:
      A165430 := proc(n,m) local cud ; cud := A077610(n) intersect A077610(m) ; max(op(cud)) ; end:
    seq(seq(A165430(n,m),m=1..n),n=1..20) ;
  • Mathematica
    A077610[n_] := Module[{a = {}}, Do[If[GCD[d, n/d] == 1, a = a ~Union~ {d}], {d, Divisors[n]}]; a]; A165430[n_, m_] := Module[{cud = A077610[n] ~Intersection~ A077610[m]}, Max[cud]]; Table[Table[A165430[n, m], {m, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d);}
    T(n,m) = vecmax(setintersect(udivs(n), udivs(m))); \\ Michel Marcus, Oct 11 2015

A384047 Triangle read by rows: T(n, k) for 1 <= k <= n is the largest divisor of k that is a unitary divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 2, 3, 2, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 3, 4, 1, 3, 1, 4, 3, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Examples

			Triangle begins:
  1
  1, 2
  1, 1, 3
  1, 1, 1, 4
  1, 1, 1, 1, 5
  1, 2, 3, 2, 1, 6
  1, 1, 1, 1, 1, 1, 7
  1, 1, 1, 1, 1, 1, 1, 8
  1, 1, 1, 1, 1, 1, 1, 1, 9
  1, 2, 1, 2, 5, 2, 1, 2, 1, 10
		

Crossrefs

Upper right triangle of A322482.

Programs

  • Mathematica
    udiv[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; T[n_, k_] := Max[Intersection[udiv[n], Divisors[k]]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten
  • PARI
    udiv(n) = select(x -> gcd(x, n/x) == 1, divisors(n));
    T(n, k) = vecmax(setintersect(udiv(n), divisors(k)));

Formula

T(n, 1) = 1.
T(n, n) = n.
T(n, k) <= A050873(n, k) = gcd(n, k), with equality if n is squarefree (A005117).

A068068 Number of odd unitary divisors of n. d is a unitary divisor of n if d divides n and gcd(d,n/d)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 1, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 4, 1, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Robert G. Wilson v, Feb 19 2002

Keywords

Comments

Shadow transform of triangular numbers.
a(n) is the number of primitive Pythagorean triangles with inradius n. For the smallest inradius of exactly 2^n primitive Pythagorean triangles see A070826.
Number of primitive Pythagorean triangles with leg 4n. For smallest (even) leg of exactly 2^n PPTs, see A088860. - Lekraj Beedassy, Jul 12 2006
As shown by Chi and Killgrove, a(n) is the total number of primitive Pythagorean triples satisfying area = n * perimeter, or equivalently 2 raised to the power of the number of distinct, odd primes contained in n. - Ant King, Mar 15 2011
This is the case k=0 of the sum over the k-th powers of the odd unitary divisors of n, which is multiplicative with a(2^e)=1 and a(p^e)=1+p^(e*k), p>2, and has Dirichlet g.f. zeta(s)*zeta(s-k)*(1-2^(k-s))/( zeta(2s-k)*(1-2^(k-2*s)) ). - R. J. Mathar, Jun 20 2011
Also the number of odd squarefree divisors of n: a(n) = Sum_{k = 1..A034444(k)} (A077610(n,k) mod 2) = Sum_{k = 1..A034444(k)} (A206778(n,k) mod 2). - Reinhard Zumkeller, Feb 12 2012
a(n) is also the number of even unitary divisors of 2*n. - Amiram Eldar, Jan 28 2023

Crossrefs

Programs

  • Haskell
    a068068 = length . filter odd . a077610_row
    -- Reinhard Zumkeller, Feb 12 2012
    
  • Maple
    A068068 := proc(n) local a,f; a :=1 ; for f in ifactors(n)[2] do if op(1,f) > 2 then a := a*2 ; end if; end do: a ; end proc: # R. J. Mathar, Apr 16 2011
  • Mathematica
    a[n_] := Length[Select[Divisors[n], OddQ[ # ]&&GCD[ #, n/# ]==1&]]
    a[n_] := 2^(PrimeNu[n]+Mod[n, 2]-1); Array[a, 105] (* Jean-François Alcover, Dec 01 2015 *)
    f[p_, e_] := If[p == 2, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2)*(gcd(d, n/d)==1)); \\ Michel Marcus, May 13 2014
    
  • PARI
    a(n) = 2^omega(n>>valuation(n,2)) \\ Charles R Greathouse IV, May 14 2014

Formula

a(n) = A034444(2n)/2. If n is even, a(n) = 2^(omega(n)-1); if n is odd, a(n) = 2^omega(n). Here omega(n) = A001221(n) is the number of distinct prime divisors of n.
Multiplicative with a(2^e) = 1, a(p^e) = 2, p>2. - Christian G. Bower May 18 2005
a(n) = A024361(4n). - Lekraj Beedassy, Jul 12 2006
Dirichlet g.f.: zeta^2(s)/ ( zeta(2*s)*(1+2^(-s)) ). Dirichlet convolution of A034444 and A154269. - R. J. Mathar, Apr 16 2011
a(n) = Sum_{d|n} mu(2*d)^2. - Ridouane Oudra, Aug 11 2019
Sum_{k=1..n} a(k) ~ 4*n*((log(n) + 2*gamma - 1 + log(2)/3) / Pi^2 - 12*zeta'(2) / Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 18 2020
a(n) = Sum_{d divides n, d odd} mu(d)^2. - Peter Bala, Feb 01 2024

Extensions

Edited by Dean Hickerson, Jun 08 2002

A206778 Irregular triangle in which n-th row lists squarefree divisors (A005117) of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 1, 3, 1, 2, 5, 10, 1, 11, 1, 2, 3, 6, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 1, 17, 1, 2, 3, 6, 1, 19, 1, 2, 5, 10, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 6, 1, 5, 1, 2, 13, 26, 1, 3, 1, 2, 7, 14, 1, 29
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2012

Keywords

Examples

			Triangle begins:
.   1: [1]
.   2: [1, 2]
.   3: [1, 3]
.   4: [1, 2]
.   5: [1, 5]
.   6: [1, 2, 3, 6]
.   7: [1, 7]
.   8: [1, 2]
.   9: [1, 3]
.  10: [1, 2, 5, 10]
.  11: [1, 11]
.  12: [1, 2, 3, 6].
		

Crossrefs

Cf. A008966, A034444 (row lengths), A048250 (row sums), A206787; A077610.

Programs

  • Haskell
    a206778 n k = a206778_row n !! k
    a206778_row = filter ((== 1) . a008966) . a027750_row
    a206778_tabf = map a206778_row [1..]
    -- Reinhard Zumkeller, May 03 2013, Feb 12 2012
    
  • Maple
    A206778 := proc(n)
        local sqdvs ,nfac,d;
        sqdvs := {} ;
        nfac := ifactors(n)[2] ;
        for d in numtheory[divisors](n) do
            if issqrfree(d) then
                sqdvs := sqdvs union {d} ;
            end if;
        end do:
        sort(sqdvs) ;
    end proc:
    seq(op(A206778(n)),n=1..10) ; # R. J. Mathar, Mar 06 2023
  • Mathematica
    Flatten[Table[Select[Divisors[n],SquareFreeQ],{n,30}]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    row(n) = select(x -> issquarefree(x), divisors(n)); \\ Amiram Eldar, May 02 2025

A384046 Triangle in which the n-th row gives the numbers from 1 to n whose largest divisor that is a unitary divisor of n is 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 3, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 5, 7, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 5, 9, 11, 13, 1, 2, 4, 7, 8, 11, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Examples

			Triangle begins:
  1,
  1,
  1, 2,
  1, 2, 3,
  1, 2, 3, 4,
  1, 5,
  1, 2, 3, 4, 5, 6,
  1, 2, 3, 4, 5, 6, 7,
  1, 2, 3, 4, 5, 6, 7, 8,
  1, 3, 7, 9
		

Crossrefs

The unitary analog of A038566.
Cf. A047994 (row lengths), A333576 (row sums), A077610, A225174, A384047.

Programs

  • Mathematica
    udiv[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; uGCD[n_, k_] := Max[Intersection[udiv[n], Divisors[k]]]; row[n_] := Select[Range[n], uGCD[n, #] == 1 &]; Array[row, 10] // Flatten
  • PARI
    udiv(n) = select(x -> gcd(x, n/x) == 1, divisors(n));
    ugcd(n, k) = vecmax(setintersect(udiv(n), divisors(k)));
    row(n) = select(x -> ugcd(n, x) == 1, vector(n, i, i));

Formula

T(n, 1) = 1.

A055076 Multiplicity of Max{gcd(d, n/d)} when d runs over divisors of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 4, 1, 4, 2, 2, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 2, 2, 2, 1, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Labos Elemer, Jun 13 2000

Keywords

Comments

Number of distinct values of gcd(d, n!/d) if d runs over divisors of n! seems to be A046951(n).
a(n) = 1 iff n is a square. - Bernard Schott, Oct 22 2019
a(n) is the number of the unitary divisors (cf. A077610) of n that are exponentially odd (A268335). - Amiram Eldar, Nov 11 2022
The number of infinitary divisors of n that are squarefree (A005117). - Amiram Eldar, Jan 09 2024

Examples

			n=120, the set of gcd(d, 120/d) values for the 16 divisors of 120 is {1,2,1,2,1,2,1,2,2,1,2,1,2,1,2,1}. The max is 2 and it occurs 8 times, so a(120)=8. This sequence seems to consist of powers of 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n->(p->coeff(p, x, degree(p)))(add(x^igcd(d, n/d), d=divisors(n))):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jul 21 2015
  • Mathematica
    a[n_] := With[{g = GCD[#, n/#]& /@ Divisors[n]}, Count[g, Max[g]]];
    Array[a, 105] (* Jean-François Alcover, Mar 28 2017 *)
    f[p_, e_] := 2^Mod[e, 2]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    A055076(n) = if(1==n,n,my(es=factor(n)[,2]~); prod(i=1,#es,2^(es[i]%2))); \\ Antti Karttunen, Apr 05 2021
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A055076 n) (if (= 1 n) n (* (+ 1 (A000035 (A067029 n))) (A055076 (A028234 n))))) ;; Antti Karttunen, Dec 02 2017

Formula

Multiplicative with a(p^e) = 2^(e mod 2). - Vladeta Jovovic, Dec 13 2002
a(n) = 2^A162642(n). - Antti Karttunen, Dec 02 2017
a(n) = A034444(A007913(n)). [Found by LODA miner, see C. Krause link. Essentially the same formula as the above ones] - Antti Karttunen, Apr 05 2021
From Amiram Eldar, Sep 09 2023: (Start)
a(n) = A034444(A350389(n)).
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 2/p^s). (End)
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - 3/p^(2*s) + 2/p^(3*s)).
Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * f(s).
Sum_{k=1..n} a(k) ~ (Pi^2 * f(1) * n / 6) * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = A065473 = Product_{primes p} (1 - 3/p^2 + 2/p^3) = 0.286747428434478734107892712789838446434331844097056995641477859336652243...,
f'(1) = f(1) * Sum_{primes p} 6*log(p) / (p^2 + p - 2) = f(1) * 2.798014228561519243358371276385174449737670294137200281334256087932048625...
and gamma is the Euler-Mascheroni constant A001620. (End)

A358347 a(n) is the sum of the unitary divisors of n that are squares.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 1, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 1, 26, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 50, 1, 1, 1, 1, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 10, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

The number of unitary divisors of n that are squares is A056624(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, f[i,1]^f[i,2] + 1));}

Formula

a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).
Multiplicative with a(p^e) = p^e + 1 if e is even, and 1 otherwise.
a(n) = A034448(n)/A358346(n).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(5/2)) = 0.6491241554... .
Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(3*s-2). - Amiram Eldar, Jan 29 2023
a(n) = A034448(A350388(n)). - Amiram Eldar, Sep 09 2023

A071974 Numerator of rational number i/j such that Sagher map sends i/j to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2002

Keywords

Comments

The Sagher map sends Product p_i^e_i / Product q_i^f_i (p_i and q_i being distinct primes) to Product p_i^(2e_i) * Product q_i^(2f_i-1). This is multiplicative.

Examples

			The Sagher map sends the following fractions to 1, 2, 3, 4, ...: 1/1, 1/2, 1/3, 2/1, 1/5, 1/6, 1/7, 1/4, 3/1, ...
		

Crossrefs

Cf. A071975. Differs from A056622 at a(32).
For other bijective mappings from integers to positive rationals see A002487, A020652/A020653, A038568/A038569, A229994/A077610, A295515.
Cf. A307868.

Programs

  • Haskell
    a071974 n = product $ zipWith (^) (a027748_row n) $
       map (\e -> (1 - e `mod` 2) * e `div` 2) $ a124010_row n
    -- Reinhard Zumkeller, Jun 15 2012
    
  • Mathematica
    f[{p_, a_}] := If[EvenQ[a], p^(a/2), 1]; a[n_] := Times@@(f/@FactorInteger[n])
    Table[Sqrt@ SelectFirst[Reverse@ Divisors@ n, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 104}] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n)=local(v=factor(n)~); prod(k=1,length(v),if(v[2,k]%2,1,v[1,k]^(v[2,k]/2)))
    
  • Python
    from math import prod
    from sympy import factorint
    def A071974(n): return prod(p**(e>>1) for p, e in factorint(n).items() if e&1^1) # Chai Wah Wu, Jul 27 2024

Formula

If n=Product p_i^e_i, then a_n=Product p_i^f(e_i), where f(n)=n/2 if n is even and f(n)=0 if n is odd. - Reiner Martin, Jul 08 2002
a(n^2) = n, A071975(n^2) = 1, cf. A000290; a(2*(2*n-1)^2) = 2*n+1, A071975(2*(2*n-1)^2) = 2, cf. A077591. - Reinhard Zumkeller, Jul 10 2011
From Amiram Eldar, Nov 02 2023, Jul 26 2024: (Start)
a(n) = sqrt(A350388(n)) (square root of largest unitary divisor of n that is a square).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-1)). (End)
From Vaclav Kotesovec, May 05 2025: (Start)
Let f(s) = Product_{p prime} (1 - (p^s + p)/((p^s + 1)*p^(2*s))).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A307868 = Product_{p prime} (1 - 2/(p*(1+p))) = 0.4716806136129978680752356330804820874259263820069868836357372554177321...
f'(1) = f(1) * Sum_{p prime} (5*p+3)*log(p) / ((p+1)*(p^2+p-2)) = f(1) * 2.1244279471327068377850377690765768532203174482128717024402373817115555...
and gamma is the Euler-Mascheroni constant A001620. (End)

Extensions

More terms from Reiner Martin, Jul 08 2002
Additional references supplied by Kevin Ryde added by N. J. A. Sloane, May 31 2012

A322857 a(1) = 1; a(n) = sum of exponential unitary divisors of n for n > 1.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2018

Keywords

Comments

The exponential unitary (or e-unitary) divisors of n = Product p(i)^a(i) are all the numbers of the form Product p(i)^b(i) where b(i) is a unitary divisor of a(i).

Crossrefs

Cf. A361255, A051377, A077610, A278908 (number of exponential unitary divisors).

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, GCD[#, e/#]==1 &]; eusigma[n_] := Times @@ f @@@ FactorInteger[n]; Array[eusigma, 100]
  • PARI
    ff(p, e) = sumdiv(e, d, if (gcd(d, e/d)==1, p^d));
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = ff(f[k,1], f[k,2]); f[k,2] = 1); factorback(f); \\ Michel Marcus, Dec 29 2018

Formula

Multiplicative with a(p^e) = Sum_{d|e, gcd(d, e/d)==1} p^d.
Previous Showing 11-20 of 113 results. Next