cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A121449 Expansion of (1 - 3*x + 2*x^2)/(1 - 4*x + 3*x^2 + x^3).

Original entry on oeis.org

1, 1, 3, 8, 22, 61, 170, 475, 1329, 3721, 10422, 29196, 81797, 229178, 642125, 1799169, 5041123, 14124860, 39576902, 110891905, 310712054, 870595599, 2439354329, 6834918465, 19151015274, 53659951372, 150351841201, 421276495414, 1180390506681, 3307380699281
Offset: 0

Views

Author

Philippe Deléham, Sep 06 2006

Keywords

Comments

From Roman Witula, Aug 07 2012: (Start)
In the cited Witula-Slota-Warzynski paper three so-called quasi-Fibonacci numbers A(n;d), B(n;d) and C(n;d), where n = 0,1,...,d \in C are discussed. These numbers are created by each of the following relations:
(1+d*c(j))^n = A(n;d) + B(n;d)*c(j) + C(n;d)*c(2*j), for every j=1,2,4, where c(j):=2*cos(2*Pi*j/7).
In fact all these "numbers" are integer polynomials of the argument d.
In the sequel for d=-1 we obtain A(n;-1)=a(n), B(n+1;-1)=-A085810(n).
Moreover, we have A(n;1)=A077998(n), B(n;1)=A006054(n+1), C(n;1)=A006054(n), and A(n;2)=A121442(n).
We note that the elements of the sequences A(n;-1), B(n;-1), and C(n;-1) satisfy the following system of recurrence equations:
A(0;-1)=1, B(0;-1)=C(0;-1)=0,
A(n+1;-1)=A(n;-1)-2*B(n;-1)+C(n;-1),
B(n+1;-1)=-A(n;-1)+B(n;-1), C(n+1;-1)=-B(n;-1)+2*C(n;-1).
It is proved that binomial transforms of the sequences: A(n;1), B(n;1), and C(n;1) are equal to the following sequences:
A(n;1)*(A(n;-1)-C(n;-1))-B(n;1)*(B(n;-1)+C(n;-1))+C(n;1)*B(n;-1), -A(n;1)*C(n;-1)+B(n;1)*(A(n;-1)-C(n;-1))-C(n;1)*(B(n;-1)-C(n;-1)), and
A(n;1)*(B(n;-1)-C(n;-1))-B(n;1)*B(n;-1)+C(n;1)*(A(n;-1)-B(n;-1)+C(n;-1)), respectively, whereas we have
A(n;-1) = Sum_{k=0..n} binomial(n,k)*(A(k;1)*A(n-k;1)-A(k;1)*B(n-k;1)-B(k;1)*C(n-k;1)-A(n-k;1)*C(k;1)+2*B(n-k;1)*C(k;1)-C(k;1)*C(n-k;1)),
B(n;-1) = Sum_{k=0..n} binomial(n,k)*(-A(k;1)*B(n-k;1)+A(k;1)*C(n-k;1)+B(k;1)*B(n-k;1)-A(n-k;1)*C(k;1)+B(n-k;1)*C(k;1)-C(k;1)*C(n-k;1)), and
C(n;-1) = Sum_{k=0..n} binomial(n,k)*(-A(k;1)*B(n-k;1)+A(n-k;1)*B(k;1)+B(k;1)*B(n-k;1)-B(k;1)*C(n-k;1)-A(n-k;1)*C(k;1)) (see identities (3.50-52) and (3.61-63) in the Witula-Slota-Warzynski paper).
(End)

Crossrefs

Programs

  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Mathematica
    CoefficientList[Series[(1 - 3*x + 2*x^2)/(1-4*x + 3*x^2 + x^3), {x, 0, 200}], x] (* Stefan Steinerberger, Sep 11 2006 *)
    LinearRecurrence[{4,-3,-1},{1,1,3},50] (* Roman Witula, Aug 07 2012 *)
  • PARI
    x='x+O('x^30); Vec((1-3*x+2*x^2)/(1-4*x+3*x^2+x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

a(0)=a(1)=1, a(2)=3, a(n+1) = 4*a(n) - 3*a(n-1) - a(n-2) for n>=2.
7*a(n) = (2-c(4))*(1-c(1))^n + (2-c(1))*(1-c(2))^n + (2-c(2))*(1-c(4))^n = (s(2))^2*(1-c(1))^n + (s(4))^2*(1-c(2))^n + (s(1))^2*(1-c(4))^n, where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7) -- it is the special case, for d=-1, of the Binet's formula for the respective quasi-Fibonacci number A(n;d) discussed in the Witula-Slota-Warzynski paper. - Roman Witula, Aug 07 2012

Extensions

More terms from Stefan Steinerberger, Sep 11 2006
a(27)-a(29) from Vincenzo Librandi, Sep 18 2015

A187070 Let i be in {1,2,3}, let r >= 0 be an integer and n=2*r+i-1. Then a(n)=a(2*r+i-1) gives the quantity of H_(7,3,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt((2*cos(Pi/7))^2-1).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 3, 5, 6, 11, 14, 25, 31, 56, 70, 126, 157, 283, 353, 636, 793, 1429, 1782, 3211, 4004, 7215, 8997, 16212, 20216, 36428, 45425, 81853, 102069, 183922, 229347, 413269, 515338, 928607, 1157954, 2086561, 2601899
Offset: 0

Views

Author

L. Edson Jeffery, Mar 05 2011

Keywords

Comments

Theory. (Start)
1. Definitions. Let T_(7,j,0) denote the rhombus with sides of unit length (=1), interior angles given by the pair (j*Pi/7,(7-j)*Pi/7) and Area(T_(7,j,0))=sin(j*Pi/7), j in {1,2,3}. Associated with T_(7,j,0) are its angle coefficients (j, 7-j) in which one coefficient is even while the other is odd. A half-tile is created by cutting T_(7,j,0) along a line extending between its two corners with even angle coefficient; let H_(7,j,0) denote this half-tile. Similarly, a T_(7,j,r) tile is a linearly scaled version of T_(7,j,0) with sides of length x^r and Area(T_(7,j,r))=x^(2*r)*sin(j*Pi/7), r>=0 an integer, where x is the positive, constant square root x=sqrt[(2*cos(j*Pi/7))^2 - 1]; likewise let H_(7,j,r) denote the corresponding half-tile. Often H_(7,i,r) (i in {1,2,3}) can be subdivided into an integral number of each equivalence class H_(7,j,0). But regardless of whether or not H_(7,j,r) subdivides, in theory such a proposed subdivision for each j can be represented by the matrix M=(m_(i,j)), i,j=1,2,3, in which the entry m_(i,j) gives the quantity of H_(7,j,0) tiles that should be present in a subdivided H_(7,i,r) tile. The number x^(2*r) (the square of the scaling factor) is an eigenvalue of M=(U_2)^r, where
U_2= (0 0 1)
(0 1 1)
(1 1 1).
2. The sequence. Let r>=0, and let C_r be the r-th "block" defined by C_r={a(2*r),a(2*r+1),a(2*r+2)}. Note that C_r-2*C_(r-1)-C_(r-2)+C_(r-3)={0,0,0}. Let n=2*r+i-1. Then a(n)=a(2*r+i-1)=m_(i,3), where M=(m_(i,j))=(U_2)^r was defined above. Hence the block C_r corresponds component-wise to the third column of M, and a(n)=m_(i,3) gives the quantity of H_(7,3,0) tiles that should appear in a subdivided H_(7,i,r) tile. (End)
Combining blocks A_r, B_r and C_r, from A187068, A187069 and this sequence, respectively, as matrix columns [A_r,B_r,C_r] generates the matrix (U_2)^r, and a negative index (-1)*r yields the corresponding inverse [A_(-r),B_(-r),C_(-r)]=(U_2)^(-r) of (U_2)^r. Therefore, the three sequences need not be causal.
Since a(2*r+2)=a(2*(r+1)) for all r, this sequence arises by concatenation of third-column entries m_(1,3) and m_(2,3) from successive matrices M=(U_2)^r.
This sequence is a trivial extension of A038196.

Examples

			Suppose r=3. Then
C_r = C_3 = {a(2*r),a(2*r+1),a(2*r+2)} = {a(6),a(7),a(8)} = {3,5,6},
corresponding to the entries in the third column of
M = (U_2)^3 = (1 2 3)
              (2 4 5)
              (3 5 6).
Choose i=2 and set n=2*r+i-1. Then a(n) = a(2*r+i-1) = a(6+2-1) = a(7) = 5, which equals the entry in row 2 and column 3 of M. Hence a subdivided H_(7,2,3) tile should contain a(7) = m_(2,3) = 5 H_(7,3,0) tiles.
		

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 0; a[2] = a[3] = a[4] = 1; a[?Negative] = 0; a[n] := a[n] = 2*a[n-2] + a[n-4] - a[n-6]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 02 2013 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(x^2*(1+x-x^2)/(1-2*x^2-x^4+x^6))) \\ G. C. Greubel, Jul 05 2017

Formula

Recurrence: a(n) = 2*a(n-2) + a(n-4) - a(n-6).
G.f.: x^2*(1+x-x^2)/(1-2*x^2-x^4+x^6).
a(2*n)=A106803(n); a(2*n+1)=A006054(n+1); a(2*n+2)=A077998(n).
Closed-form: a(n) = (1/14)*[[X_1+Y_1*(-1)^(n-1)]*[(w_2)^2-(w_3)^2]*(w_1)^(n-1)+[X_2+Y_2*(-1)^(n-1)]*[(w_3)^2-(w_1)^2]*(w_2)^(n-1)+[X_3+Y_3*(-1)^(n-1)]*[(w_1)^2-(w_2)^2]*(w_3)^(n-1)], where w_k = sqrt[(2cos(k*Pi/7))^2-1], X_k = (w_k)^3+(w_k)^2-w_k and Y_k = -(w_k)^3+(w_k)^2+w_k, k=1,2,3.

A231187 Decimal expansion of the length ratio (largest diagonal)/side in the regular 7-gon (or heptagon).

Original entry on oeis.org

2, 2, 4, 6, 9, 7, 9, 6, 0, 3, 7, 1, 7, 4, 6, 7, 0, 6, 1, 0, 5, 0, 0, 0, 9, 7, 6, 8, 0, 0, 8, 4, 7, 9, 6, 2, 1, 2, 6, 4, 5, 4, 9, 4, 6, 1, 7, 9, 2, 8, 0, 4, 2, 1, 0, 7, 3, 1, 0, 9, 8, 8, 7, 8, 1, 9, 3, 7, 0, 7, 3, 0, 4, 9, 1, 2, 9, 7, 4, 5, 6, 9, 1, 5, 1, 8, 8, 5, 0, 1, 4, 6, 5, 3, 1, 7, 0, 7, 4, 3, 3, 3, 4, 1
Offset: 1

Views

Author

Wolfdieter Lang, Nov 21 2013

Keywords

Comments

The length ratio (largest diagonal)/side in the regular 7-gon (heptagon) is sigma(7) = S(2, rho(7)) = -1 + rho(7)^2, with rho(7) = 2*cos(Pi/7), which is approx. 1.8019377358 (see A160389 for its decimal expansion, and A049310 for the Chebyshev S-polynomials). sigma(7), approx. 2.2469796, is also the reciprocal of one of the solutions of the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of rho(7) (see A187360), namely 1/(2*cos(3*Pi/7)).
sigma(7) is the limit of a(n+1)/a(n) for n->infinity for the sequences A006054 and A077998 which can be considered as analogs of the Fibonacci sequence in the pentagon. Thus sigma(7) plays in the heptagon the role of the golden section in the pentagon.
See the Steinbach link.

Examples

			2.24697960371746706105000976800847962126454946179280421073109887819...
		

Crossrefs

Programs

Formula

sigma(7) = -1 + (2*cos(Pi/7))^2 = 1/(2*cos(3*Pi/7)).
Equals A116425 -1.
From Geoffrey Caveney, Apr 23 2014: (Start)
sigma(7) = exp(asinh(cos(Pi/7))).
cos(Pi/7) + sqrt(1+cos(Pi/7)^2). (End)
From Peter Bala, Oct 12 2021: (Start)
Minimal polynomial x^3 - 2*x^2 - x + 1.
Equals 2*(cos(3*Pi/7) - cos(6*Pi/7)). The other zeros of the minimal polynomial are 2*(cos(Pi/7) - cos(2*Pi/7)) = A255240 and 2*(cos(5*Pi/7) - cos(10*Pi/7)) = 1 - A160389.
The quadratic mapping z -> z^2 - 2*z cyclically permutes the zeros of the minimal polynomial. The inverse cyclic permutation is given by the mapping z -> 2 + z - z^2.
Equals Product_{n >= 0} (7*n+3)*(7*n+4)/((7*n+1)*(7*n+6)) = 1 + Product_{n >= 0} (7*n+3)*(7*n+4)/((7*n+2)*(7*n+5)) = 1 + A255249 = 1/A255241. (End)
Equals 1/(2*sin(Pi/14)) = 1 + 2*sin(3*Pi/14). - Gary W. Adamson, Jun 25 2022
Equals (2*cos(Pi/7)) * (2*cos(2*Pi/7)) = (i^(2/7) + i^(-2/7)) * (i^(4/7) + i^(-4/7)) = 1 + i^(4/7) + i^(-4/7). - Gary W. Adamson, Jul 16 2022
Equals 2F1(1/7,2/7;1/2;1) [Zucker] - R. J. Mathar, Jun 24 2024

A096976 Number of walks of length n on P_3 plus a loop at the end.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 5, 5, 14, 19, 42, 66, 131, 221, 417, 728, 1341, 2380, 4334, 7753, 14041, 25213, 45542, 81927, 147798, 266110, 479779, 864201, 1557649, 2806272, 5057369, 9112264, 16420730, 29587889, 53317085, 96072133, 173118414, 311945595, 562110290
Offset: 0

Views

Author

Paul Barry, Jul 16 2004

Keywords

Comments

Counts closed walks of length n at the start of P_3 to which a loop has been added at the other extremity. a(n+1) counts walks between the first node and the last. Let A be the adjacency matrix of the graph P_3 with a loop added at the end. A is a 'reverse Jordan matrix' [0,0,1;0,1,1;1,1,0]. a(n) is obtained by taking the (1,1) element of A^n.
Sequence is also related to matrices associated with rhombus substitution tilings showing 7-fold rotational symmetry. Let A_{7,1} be the 3 X 3 unit-primitive matrix (see [Jeffery]) A_{7,1}=[0,1,0; 1,0,1; 0,1,1]; then a(n)=[A_{7,1}^n](1,1). - _L. Edson Jeffery, Jan 05 2012
a(n+2) is the (1,1) element of the n-th power of each of the two 3 X 3 matrices: [0,1,1; 1,0,0; 1,0,1], [0,1,1; 1,1,0; 1,0,0]. - Christopher Hunt Gribble, Apr 03 2014

Examples

			G.f. = 1 + x^2 + 2*x^4 + x^5 + 5*x^6 + 5*x^7 + 14*x^8 + 19*x^9 + ... - _Michael Somos_, Dec 12 2023
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -1}, {1, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
    a[ n_] := {1, 0, 0} . MatrixPower[{{1, 2, -1}, {1, 0, 0}, {0, 1, 0}}, n] . {1, 1, 3}; (* Michael Somos, Dec 12 2023 *)
  • PARI
    {a(n) = [1, 0, 0] * [1, 2, -1; 1, 0, 0; 0, 1, 0]^n * [1, 1, 3]~}; /* Michael Somos, Dec 12 2023 */

Formula

G.f. : (1-x-x^2)/(1-x-2x^2+x^3); a(n)=a(n-1)+2a(n-2)-a(n-3).
a(n) = 5a(n-2)-6a(n-4)+a(n-6). - Floor van Lamoen, Nov 02 2005
a(n) = A077998(-n) for all n in Z. - Michael Somos, Dec 12 2023

A121442 Expansion of (1-x^2)/(1-x-9*x^2+x^3).

Original entry on oeis.org

1, 1, 9, 17, 97, 241, 1097, 3169, 12801, 40225, 152265, 501489, 1831649, 6192785, 22176137, 76079553, 269472001, 932011841, 3281180297, 11399814865, 39998425697, 139315579185, 487901595593, 1701743382561, 5953542163713, 20781331011169, 72661467102025
Offset: 0

Views

Author

Philippe Deléham, Sep 06 2006

Keywords

Comments

From Roman Witula, Aug 08 2012: (Start)
We have a(n)=A(n;2), where A(n;2), B(n;2) and C(n;2) are the special cases of so-called quasi-Fibonacci numbers A(n;d), B(n;d), and C(n;d) for the value of argument d=2 - for details see Witula's comments to A121449 or the paper of Witula-Slota-Warzynski's. The sequences A(n;2), B(n;2) and C(n;2) are defined by the following system of recurrence equations:
A(0;2)=1, B(0;2)=C(0;2)=0,
A(n+1;2)=A(n;2)+4*B(n;2)-2*C(n;2), B(n+1;2)=2*A(n;2)+B(n;2), and C(n+1;2)=2*B(n;2)-C(n;2).
We note that A(n;1)=A077998(n), B(n;1)=A006054(n+1), and C(n;1)=A006054(n). We know (see formulas (3.61-63) in Witula et al.'s paper) that the sequences: (-2)^(-n)*(A(n;1)*(A(n;2)-C(n;2))-B(n;1)*(B(n;2)+C(n;2))+C(n;1)*B(n;2)), (-2)^(-n)*(-A(n;1)*C(n;2)+B(n;1)*(A(n;2)-C(n;2))-C(n;1)*(B(n;2)-C(n;2))), and (-2)^(-n)*(A(n;1)*(B(n;2)-C(n;2))-B(n;1)*B(n;2)+C(n;1)*(A(n;2)-B(n;2)+C(n;2))) are the binomial transforms of the sequences (-2)^(-n)*A(n;1), (-2)^(-n)*B(n;1), and (-2)^(-n)*C(n;1) respectively. Moreover the elements of the sequences A(n;1/2)=2^(-n)*A052975, B(n;1/2)=2^(-n)*A094789, and C(n;1/2) could be described by certain convolutions type identities for the elements of A(n;2), B(n;2), and C(n;2) (see identities (3.58-60) in Witula et al.'s paper). (End)

Crossrefs

Programs

  • Magma
    I:=[1,1,9]; [n le 3 select I[n] else Self(n-1)+9*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{1,9,-1},{1,1,9},50] (* Roman Witula, Aug 08 2012 *)
    CoefficientList[Series[(1 - x^2)/(1 - x - 9 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    Vec((1-x^2)/(1-x-9*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(0)=a(1)=1, a(2)=9, a(n+1) = a(n)+9*a(n-1)-a(n-2) for n>=2.
7*a(n) = (2-c(4))*(1-2*c(1))^n + (2-c(1))*(1-2*c(2))^n + (2-c(2))*(1-2*c(4))^n = (s(2))^2*(1-2*c(1))^n + (s(4))^2*(1-2*c(2))^n + (s(1))^2*(1-2*c(4))^n, where c(j):=2*Cos(2Pi*j/7) and s(j):=2*Sin(2Pi*j/7) - it is the special case, for d=2, of the Binet's formula for the respective quasi-Fibonacci number A(n;d) discussed in Witula-Slota-Warzynski's paper (see also A121449). - Roman Witula, Aug 08 2012

Extensions

Corrected by T. D. Noe, Oct 25 2006
More terms from Vincenzo Librandi, Sep 18 2015

A105306 Triangle read by rows: T(n,k) is the number of directed column-convex polyominoes of area n, having the top of the rightmost column at height k.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 16, 28, 25, 14, 5, 1, 32, 64, 66, 44, 20, 6, 1, 64, 144, 168, 129, 70, 27, 7, 1, 128, 320, 416, 360, 225, 104, 35, 8, 1, 256, 704, 1008, 968, 681, 363, 147, 44, 9, 1, 512, 1536, 2400, 2528, 1970, 1182, 553, 200, 54, 10, 1, 1024
Offset: 1

Views

Author

Emeric Deutsch, Apr 25 2005

Keywords

Comments

From Gary W. Adamson, Apr 24 2005: (Start)
Let A be the array
1, 0, 0, 0, 0, 0, ...
0, 1, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, ...
0, 2, 0, 1, 0, 0, ...
1, 0, 3, 0, 1, 0, ...
0, 3, 0, 4, 0, 1, ...
...
where columns are bin(n,k) with alternating zeros. (Row sums = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...(Fibonacci numbers).) Let P = infinite lower triangular Pascal triangle matrix (A007318). Form P * A: this gives the rows of the present sequence. [Comment corrected by Philippe Deléham, Dec 09 2008] (End)
T(n,k) is the number of nondecreasing Dyck paths of semilength n, having height of rightmost peak equal to k. Example: T(4,1)=4 because we have UDUDUDUD, UDUUDDUD, UUDDUDUD and UUUDDDUD, where U=(1,1) and D=(1,-1). Sum of row n = Fibonacci(2n-1) (A001519). Basically the same as A062110.
T(n,k) is the number of permutations of [n] with length n-k that avoid the patterns 321 and 3412. - Bridget Tenner, Sep 28 2005
T(2*n-1,n)/n = A001003(n-1) (little Schroeder numbers). Proof with Lagrange inversion of inverse of g.f. of A001003.
Row sums = odd-indexed Fibonacci numbers.
Diagonal sums: A077998. - Philippe Deléham, Nov 16 2008
Central coefficients are A176479. Inverse is A125692. - Paul Barry, Apr 18 2010
Riordan matrix ((1-x)/(1-2x),(x-x^2)/(1-2x)). - Emanuele Munarini, Mar 22 2011
T(n,k) is the number of ideals in the fence Z(2n-1) with n-k elements of rank 0. - Emanuele Munarini, Mar 22 2011
Triangle T(n,k), 1 <= k <= n, read by rows, given by (0,1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 30 2011
T(n,k) is the number of permutations of [n] for which k is equal to both the length and reflection length. - Bridget Tenner, Feb 22 2012

Examples

			Triangle begins:
   1;
   1,   1;
   2,   2,   1;
   4,   5,   3,   1;
   8,  12,   9,   4,   1;
  16,  28   25,  14,   5,   1;
  32,  64,  66,  44,  20,   6,   1;
  64, 144, 168, 129,  70,  27,   7,   1;
  ...
From _Paul Barry_, Apr 18 2010: (Start)
Production matrix is
   1,  1;
   1,  1,  1;
   0,  1,  1,  1;
  -1,  0,  1,  1,  1;
   0, -1,  0,  1,  1,  1;
   2,  0, -1,  0,  1,  1,  1;
   0,  2,  0, -1,  0,  1,  1,  1;
  -5,  0,  2,  0, -1,  0,  1,  1,  1;
   0, -5,  0,  2,  0, -1,  0,  1,  1,  1;
  14,  0, -5,  0,  2,  0, -1,  0,  1,  1,  1; (End)
		

References

  • V. E. Hoggatt, Jr. and Marjorie Bicknell, editors: "A Primer for the Fibonacci Numbers", 1970, p. 87.

Crossrefs

Cf. A001519. Essentially the same array as A062110.
Row sums = A001519(n-1), n >= 1.

Programs

  • Maple
    T:=proc(n,k) if k
    				
  • Mathematica
    t[n_, k_] := 2^(n-2*k-1)*Binomial[n, k]*Hypergeometric2F1[-k-1, -k, -n, -1]; t[n_, n_] = 1; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 28 2014 *)
  • Maxima
    create_list(sum(binomial(k+1,i)*binomial(n-i,k)*(-1)^i*2^(n-k-i),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 22 2011 */

Formula

T(n,k) = sum(binomial(k+j, k-1)*binomial(n-k-1, j), j=0..n-k-1) (0<=k<=n). (This appears to be incorrect. - Emanuele Munarini, Mar 22 2011)
G.f.: t*z*(1-z)/(1 - 2*z - t*z*(1-z)).
From Emanuele Munarini, Mar 22 2011: (Start)
T(n,k) = Sum_{i=0..n-k} binomial(k+1,i)*binomial(n-i,k)*(-1)^i*2^(n-k-i).
T(n,k) = Sum_{i=0..n-k} binomial(k+1,i)*M(i,n-k-i)*2^(n-k-i), where M(n,k) = n*(n+1)*(n+2)*...*(n+k-1)/k!. (End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Oct 30 2013

Extensions

Entry revised by N. J. A. Sloane, Apr 27 2007

A215404 a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3), with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 4, 13, 39, 113, 322, 910, 2561, 7192, 20175, 56563, 158535, 444276, 1244936, 3488381, 9774440, 27387681, 76739023, 215018609, 602469686, 1688083894, 4729907909, 13252910268, 37133833451, 104046695091, 291532369743, 816855560248, 2288778436672, 6413014696201
Offset: 0

Views

Author

Roman Witula, Aug 09 2012

Keywords

Comments

We have a(n)=C(n;-1), A121449(n)=A(n;-1), A085810(n+1)=-B(n+1;-1), where A(n;d), B(n;d), and C(n;d), n in N, d in C, are so-called quasi-Fibonacci numbers defined and discussed in the comments to A121449 and in Witula-Slota-Warzynski's paper. It follows from formulas (3.47-49) in this paper that the value of A(n;1/3), B(n;1/3) and C(n;1/3) could be obtained from special convolution type identities for sequences a(n), A121449, and A085810.

Crossrefs

Programs

  • Magma
    I:=[0,0,1]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{4,-3,-1}, {0,0,1}, 50]
    CoefficientList[Series[x^2/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    Vec(x^2/(1-4*x+3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

G.f.: x^2/(1-4*x+3*x^2+x^3).
a(n) = (1/7)*((c(2)-c(4))*(1-c(1))^n + (c(4)-c(1))*(1-c(2))^n + (c(1)-c(2))*(1-c(4))^n), where c(j):=2*cos(2*Pi*j/7) - this formula is the Binet formula for a(n) (see the Binet formula (3.17) for the respective quasi-Fibonacci number C(n;d) for value d=-1 in the Witula-Slota-Warzynski paper).

A106803 Expansion of x*(1-x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

0, 1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209
Offset: 0

Views

Author

Roger L. Bagula, May 17 2005

Keywords

Comments

Essentially a duplicate of A077998: a(n) = A077998(n-1). - Joerg Arndt, Aug 14 2015
a(n) appears in the formula for the nonnegative powers of sigma, the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with rho = 2*cos(Pi/7), the ratio of the smaller heptagon diagonal to the side length, as follows. sigma^n = a(n-1)*1 + B(n)*rho + a(n)*sigma, n>=0, with B(n)=A006054(n). Put a(-1):= 1. See the Steinbach reference, and a comment under A052547.
a(n-1) is the top left entry of the n-th power of the 3X3 matrix [0, 1, 0; 1, 1, 1; 0, 1, 1] or of the 3X3 matrix [0, 0, 1; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    m = {{0, 0, 1}, {1, 2, 0}, {1, 1, 0}}; v[0] = {0, 1, 1}; v[n_] := m.v[n - 1]; Table[v[n][[1]], {n, 0, 30}] (* Edited and corrected by L. Edson Jeffery, Oct 18 2017 *)
    RecurrenceTable[{a[1]== 0, a[2]== 1, a[3]== 1, a[n]== 2*a[n-1]  + a[n-2] - a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 14 2015 *)
  • PARI
    concat(0,Vec((1-x)/(x^3-2*x-x^2+1)+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012

Formula

a(n) = A077998(n-1). - R. J. Mathar, Aug 07 2008
a(n) = A187070(2*n), a(n) = A187068(2*n+2). - L. Edson Jeffery, Mar 10 2011
a(n+1) = - A199853(n+1). - G. C. Greubel, Aug 14 2015
a(n) = 2*a(n-1) + a(n-2) - a(n-3), a(0)=0, a(1)=a(2)=1. - G. C. Greubel, Aug 14 2015
a(n) = A006356(n-2) for n > 1. - Georg Fischer, Oct 21 2018

Extensions

Edited by N. J. A. Sloane, Aug 08 2008

A188316 Riordan array (1/(1-x^2), x/((1-x)*(1-x^2))).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 3, 2, 1, 1, 3, 6, 3, 1, 0, 6, 10, 10, 4, 1, 1, 6, 20, 22, 15, 5, 1, 0, 10, 30, 49, 40, 21, 6, 1, 1, 10, 50, 91, 100, 65, 28, 7, 1, 0, 15, 70, 168, 216, 181, 98, 36, 8, 1, 1, 15, 105, 280, 444, 441, 301, 140, 45, 9, 1
Offset: 0

Views

Author

Paul Barry, Mar 28 2011

Keywords

Comments

Row sums are A077998.
Diagonal sums are A052547.
Inverse is A188317.

Examples

			Triangle begins
1,
0, 1,
1, 1, 1,
0, 3, 2, 1,
1, 3, 6, 3, 1,
0, 6, 10, 10, 4, 1,
1, 6, 20, 22, 15, 5, 1,
0, 10, 30, 49, 40, 21, 6, 1,
1, 10, 50, 91, 100, 65, 28, 7, 1,
0, 15, 70, 168, 216, 181, 98, 36, 8, 1
		

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-3,k), T(0,0) = T(1,1) = T(2,0) = T(2,1) = T(2,2)=1, T(1,0)=0, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 16 2014

A215492 a(n) = 21*a(n-2) + 7*a(n-3), with a(0)=0, a(1)=3, and a(2)=6.

Original entry on oeis.org

0, 3, 6, 63, 147, 1365, 3528, 29694, 83643, 648270, 1964361, 14199171, 45789471, 311933118, 1060973088, 6871121775, 24463966674, 151720368891, 561841152579, 3357375513429, 12860706786396, 74437773850062, 293576471108319, 1653218198356074, 6686170310225133
Offset: 0

Views

Author

Roman Witula, Aug 13 2012

Keywords

Comments

We have a(n)=B(n;3), where B(n;d), n=1,2,..., d \in C, denote one of the quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. Its conjugate sequences A(n;3) and C(n;3) are discussed in A121458 and A215484 respectively. Similarly as in A121458 we deduce that each of the following elements a(3*n), a(3*n+1), a(3*n+2) is divided by 3*7^n for every n=0,1,... .

Crossrefs

Programs

  • Magma
    I:=[0,3,6]; [n le 3 select I[n] else 21*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{0,21,7}, {0,3,6}, 50]
    CoefficientList[Series[(3 x + 6 x^2)/(1 - 21 x^2 - 7 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    concat(0,Vec((3+6*x)/(1-21*x^2-7*x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

a(n) = (1/7)*((c(1)-c(4))*(1+3*c(1))^n + (c(2)-c(1))*(1+3*c(2))^n + (c(4)-c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see Witula-Slota-Warzynski paper).
G.f.: (3*x+6*x^2)/(1-21*x^2-7*x^3).
Previous Showing 11-20 of 31 results. Next