A006053
a(n) = a(n-1) + 2*a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 9, 14, 28, 47, 89, 155, 286, 507, 924, 1652, 2993, 5373, 9707, 17460, 31501, 56714, 102256, 184183, 331981, 598091, 1077870, 1942071, 3499720, 6305992, 11363361, 20475625, 36896355, 66484244, 119801329, 215873462, 388991876, 700937471
Offset: 0
G.f. = x^2 + x^3 + 3*x^4 + 4*x^5 + 9*x^6 + 14*x^7 + 28*x^8 + 47*x^9 + ...
Regarding the description "number of compositions of n into floor(j/2) kinds of j's," the a(6)=9 compositions of 6 are (2a, 2a, 2a), (3a, 3a), (2a, 4a), (2a, 4b), (4a, 2a), (4b, 2a), (6a), (6b), (6c). - _Bridget Tenner_, Feb 25 2022
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications (2012).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Robin Chapman and Nicholas C. Singer, Eigenvalues of a bidiagonal matrix, Amer. Math. Monthly, 111 (2004), p. 441.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- Jia Huang, A coin flip game and generalizations of Fibonacci numbers, arXiv:2501.07463 [math.CO], 2025. See p. 9.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 433
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See p. 11.
- László Németh and Dragan Stevanović, Graph solution of system of recurrence equations, Research Gate, 2023. See Table 2 at p. 6.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. Sachdeva and A. K. Agarwal, Combinatorics of certain restricted n-color composition functions, Discrete Mathematics, 340, (2017), 361-372.
- Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
-
a006053 n = a006053_list !! n
a006053_list = 0 : 0 : 1 : zipWith (+) (drop 2 a006053_list)
(zipWith (-) (map (2 *) $ tail a006053_list) a006053_list)
-- Reinhard Zumkeller, Oct 14 2011
-
[ n eq 1 select 0 else n eq 2 select 0 else n eq 3 select 1 else Self(n-1) +2*Self(n-2) -Self(n-3): n in [1..40] ]; // Vincenzo Librandi, Aug 19 2011
-
a[0]:=0: a[1]:=0: a[2]:=1: for n from 3 to 40 do a[n]:=a[n-1]+2*a[n-2]-a[n-3] od:seq(a[n], n=0..40); # Emeric Deutsch
A006053:=z**2/(1-z-2*z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{1,2,-1}, {0,0,1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
-
{a(n) = if( n<0, n = -1-n; polcoeff( -1 / (1 - 2*x - x^2 + x^3) + x * O(x^n), n), polcoeff( x^2 / (1 - x - 2*x^2 + x^3) + x * O(x^n), n))}; /* Michael Somos, Nov 30 2014 */
-
@CachedFunction
def a(n): # a = A006053
if (n<3): return (n//2)
else: return a(n-1) + 2*a(n-2) - a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Feb 12 2023
A077998
Expansion of (1-x)/(1-2*x-x^2+x^3).
Original entry on oeis.org
1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995, 43100270734, 96845429254
Offset: 0
G.f. = 1 + x + 3*x^2 + 6*x^3 + 14*x^4 + 31*x^5 + 70*x^6 + 157*x^7 + 353*x^8 + ... - _Michael Somos_, Dec 12 2023
- Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
- Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, Introducing supersymmetric frieze patterns and linear difference operators, Math. Z. 281 (2015) 1061.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Alexey Ustinov, Supercontinuants, arXiv:1503.04497 [math.NT], 2015.
- Floor van Lamoen, Wave sequences
- R. Witula, D. Slota, and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
Apart from initial term, same as
A006356, which is the main entry for this sequence.
A106803 is yet another version.
-
a:=[1,1,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 27 2019
-
I:=[1,1,3]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 01 2017
-
CoefficientList[Series[(1-x)/(1-2*x-x^2+x^3), {x, 0, 40}], x] (* Stefan Steinerberger, Sep 11 2006 *)
LinearRecurrence[{2,1,-1},{1,1,3},40] (* Roman Witula, Aug 07 2012 *)
a[ n_] := {1, 0, 0} . MatrixPower[{{0, 1, 0}, {0, 0, 1}, {-1, 1, 2}}, n] . {1, 1, 3}; (* Michael Somos, Dec 12 2023 *)
-
a(n)=([0,1,0; 0,0,1; -1,1,2]^n*[1;1;3])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
((1-x)/(1-2*x-x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
A028495
Expansion of g.f. (1-x^2)/(1-x-2*x^2+x^3).
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 19, 33, 61, 108, 197, 352, 638, 1145, 2069, 3721, 6714, 12087, 21794, 39254, 70755, 127469, 229725, 413908, 745889, 1343980, 2421850, 4363921, 7863641, 14169633, 25532994, 46008619, 82904974, 149389218, 269190547, 485064009, 874055885
Offset: 0
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 19*x^6 + 33*x^7 + 61*x^8 + ...
From _Joerg Arndt_, May 21 2013: (Start)
There are a(6)=19 compositions of 6 where increments can only appear at every second position:
01: [ 1 1 1 1 1 1 ]
02: [ 1 1 1 1 2 ]
03: [ 1 1 2 1 1 ]
04: [ 1 1 2 2 ]
05: [ 1 1 3 1 ]
06: [ 1 1 4 ]
07: [ 2 1 1 1 1 ]
08: [ 2 1 2 1 ]
09: [ 2 1 3 ]
10: [ 2 2 1 1 ]
11: [ 2 2 2 ]
12: [ 3 1 1 1 ]
13: [ 3 1 2 ]
14: [ 3 2 1 ]
15: [ 3 3 ]
16: [ 4 1 1 ]
17: [ 4 2 ]
18: [ 5 1 ]
19: [ 6 ]
There are a(6)=19 compositions of 6 where there is no fall between every second pair of parts, starting with the first and second part:
01: [ 1 1 1 1 1 1 ]
02: [ 1 1 1 1 2 ]
03: [ 1 1 1 2 1 ]
04: [ 1 1 1 3 ]
05: [ 1 1 2 2 ]
06: [ 1 1 4 ]
07: [ 1 2 1 1 1 ]
08: [ 1 2 1 2 ]
09: [ 1 2 3 ]
10: [ 1 3 1 1 ]
11: [ 1 3 2 ]
12: [ 1 4 1 ]
13: [ 1 5 ]
14: [ 2 2 1 1 ]
15: [ 2 2 2 ]
16: [ 2 3 1 ]
17: [ 2 4 ]
18: [ 3 3 ]
19: [ 6 ]
(End)
19 = (1, 0, 1, 0, 1, 1) dot (1, 1, 2, 3, 6, 10) = (1 + 0 + 2 + 0 + 6 + 10). Cf. comment of Apr 28 2009. - _Gary W. Adamson_, Aug 10 2016
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. V. Ault and C. Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics (2014).
- Jean-Luc Baril, José L. Ramírez, and Fabio A. Velandia, Bijections between Directed-Column Convex Polyominoes and Restricted Compositions, September 29, 2023.
- Alexandru Chirvasitu, Tara Hudson, and Aparna Upadhyay, Recursive sequences attached to modular representations of finite groups, arXiv:2105.04732 [math.RT], 2021. See (1) p. 27.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015.
- Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
- Nachum Dershowitz, Between Broadway and the Hudson, arXiv:2006.06516 [math.CO], 2020.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- Noam D. Elkies, New Directions in Enumerative Chess Problems, The Electronic Journal of Combinatorics, 11 (2), 2004-2005; arXiv:math/0508645 [math.CO], 2005. - _Johannes W. Meijer_, May 29 2010
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 14.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1056
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1057
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See pp. 9, 15.
- László Németh and Dragan Stevanović, Graph solution of system of recurrence equations, Research Gate, 2023. See Table 2 at p. 6.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
Cf.
A052534,
A052547,
A096976,
A276053,
A068911,
A078038,
A094790,
A000045,
A038754,
A028495,
A030436,
A061551,
A178381.
-
spec := [S,{S=Sequence(Union(Prod(Sequence(Prod(Z,Z)),Z,Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
with(GraphTheory): P:=6: G:= PathGraph(P): A:=AdjacencyMatrix(G): nmax:=34; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k], k=1..P) od: seq(a(n), n=0..nmax); # Johannes W. Meijer, May 29 2010
a := (-1)^(3/7) - (-1)^(4/7):
b := (-1)^(5/7) - (-1)^(2/7):
c := (-1)^(1/7) - (-1)^(6/7):
f := n -> (a^n * (2 + a) + b^n * (2 + b) + c^n * (2 + c))/7:
seq(simplify(f(n)), n=0..36); # Peter Luschny, Sep 16 2020
-
LinearRecurrence[{1, 2, -1}, {1, 1, 2}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
CoefficientList[Series[(1-x^2)/(1-x-2x^2+x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 23 2018 *)
a[n_,m_]:= 2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
Table[a[n,6],{n,0,40}]//Round (* Herbert Kociemba, Sep 15 2020 *) (* Herbert Kociemba, Sep 14 2020 *)
-
{a(n) = if( n<0, n = -1-n; polcoeff( (1 - x^2) / (1 - 2*x - x^2 + x^3) + x * O(x^n), n), polcoeff( (1 - x^2) / (1 - x - 2*x^2 + x^3) + x * O(x^n), n))} /* Michael Somos, Apr 05 2012 */
-
a(n)=([0,1,0;0,0,1;-1,2,1]^n*[1;1;2])[1,1] \\ Charles R Greathouse IV, Aug 25 2016
A052547
Expansion of (1-x)/(1-x-2*x^2+x^3).
Original entry on oeis.org
1, 0, 2, 1, 5, 5, 14, 19, 42, 66, 131, 221, 417, 728, 1341, 2380, 4334, 7753, 14041, 25213, 45542, 81927, 147798, 266110, 479779, 864201, 1557649, 2806272, 5057369, 9112264, 16420730, 29587889, 53317085, 96072133, 173118414, 311945595, 562110290, 1012883066
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- Man Gao, Colin Tan, and Jie Wu, Loop homological invariants associated to real projective spaces, Topology Appl. 209, 275-288 (2016).
- M. Gao and J. Wu, Homology Decompositions of the Loops on 1-Stunted Borel Constructions of C_2-Actions, arXiv:1301.0864 [math.AT], 2013.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 15.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 483
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
-
a:=[1,0,2];; for n in [4..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 08 2019
-
I:=[1,0,2]; [n le 3 select I[n] else Self(n-1) + 2*Self(n-2) - Self(n-3): n in [1..40]]; // G. C. Greubel, May 08 2019
-
spec := [S,{S=Sequence(Prod(Z,Union(Z,Prod(Z, Sequence(Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..40);
-
LinearRecurrence[{1, 2, -1}, {1, 0, 2}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
-
{a(n) = if(n==0,1,if(n==1,0,if(n==2,2,a(n-1)+2*a(n-2)-a(n-3))))};
for(i=0,40,print1(a(i),",")) \\ Lambert Klasen, Jan 30 2005
-
((1-x)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
A080937
Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798, 479779, 1557649, 5057369, 16420730, 53317085, 173118414, 562110290, 1825158051, 5926246929, 19242396629, 62479659622, 202870165265, 658715265222, 2138834994142, 6944753544643, 22549473023585
Offset: 0
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 417*x^7 + 1341*x^8 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..600
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 27.
- Jean-Luc Baril, Toufik Mansour, José L. Ramírez, and Mark Shattuck, Catalan words avoiding a pattern of length four, Univ. de Bourgogne (France, 2024). See p. 3.
- Jean-Luc Baril and Helmut Prodinger, Enumeration of partial Lukasiewicz paths, arXiv:2205.01383 [math.CO], 2022.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- Wei Chen, Enumeration of Set Partitions Refined by Crossing and Nesting Numbers, MS Thesis, Department of Mathematics. Simon Fraser University, Fall 2014. Table 4.1, line k=2.
- Johann Cigler, Number of bounded Dyck paths with "negative length", MathOverflow question, Sep 26 2020.
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Paul Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Stefan Felsner and Daniel Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3.
- Daniel Heldt, On the mixing time of the face flip-and up/down Markov chain for some families of graphs, Dissertation, Mathematik und Naturwissenschaften der Technischen Universitat Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften, 2016.
- Matthew Hyatt and Jeffrey Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv preprint arXiv:1208.1052 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 24 2012
- Aleksandar Ilic and Andreja Ilic, On the number of restricted Dyck paths, Filomat 25:3 (2011), 191-201; DOI: 10.2298/FIL1103191I.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=5, pages 10-11). - From _N. J. A. Sloane_, May 09 2012
- Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras I. Foundations, undirected graphs, antiassociative graphs, arXiv:2011.07621 [math.CO], 2020. See also J. of Algebraic Combinatorics (2021) Vol. 53, 613-638.
- Toufik Mansour and Mark Shattuck, Some enumerative results related to ascent sequences, arXiv preprint arXiv:1207.3755 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 22 2012
- Sophie Morier-Genoud, Valentin Ovsienko, and Serge Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, arXiv:1008.3359 [math.AG], 2010-2011. - From _N. J. A. Sloane_, Dec 26 2012
- Sophie Morier-Genoud, Valentin Ovsienko, and Serge Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987. - From _N. J. A. Sloane_, Dec 26 2012
- David Nečas and Ivan Ohlídal, Consolidated series for efficient calculation of the reflection and transmission in rough multilayers, Optics Express, Vol. 22, 2014, No. 4; DOI:10.1364/OE.22.004499.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Lara Pudwell, Pattern avoidance in trees, slides from a talk, mentions many sequences, 2012. - From _N. J. A. Sloane_, Jan 03 2013
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
Cf.
A033191 which essentially provide the same sequence for different limits and tend to
A000108.
-
I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
-
a:= n-> (<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]:
seq(a(n), n=0..35); # Alois P. Heinz, Nov 09 2012
-
nn=56;Select[CoefficientList[Series[(1-4x^2+3x^4)/(1-5x^2+6x^4-x^6), {x,0,nn}], x],#>0 &] (* Geoffrey Critzer, Jan 26 2014 *)
LinearRecurrence[{5,-6,1},{1,1,2},30] (* Jean-François Alcover, Jan 09 2016 *)
-
a=vector(99); a[1]=1; a[2]=2;a[3]=5; for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2] +a[n-3]); a \\ Charles R Greathouse IV, Jun 10 2011
-
{a(n) = if( n<0, n = -n; polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, May 04 2012 */
A096975
Trace sequence of a path graph plus loop.
Original entry on oeis.org
3, 1, 5, 4, 13, 16, 38, 57, 117, 193, 370, 639, 1186, 2094, 3827, 6829, 12389, 22220, 40169, 72220, 130338, 234609, 423065, 761945, 1373466, 2474291, 4459278, 8034394, 14478659, 26088169, 47011093, 84708772, 152642789, 275049240
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..3910
- A. Akbary, Q. Wang, A generalized Lucas sequence and permutations binomials, Proc. Am. Math. Soc. 134 (2006) 15-22, sequence a(n) with l=7.
- Robin Chapman and Nicholas C. Singer, Eigenvalues of a bidiagonal matrix, Amer. Math. Monthly, 111 (2004), p. 441.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- L. E. Jeffery, Unit-primitive matrix
- Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
- Q. Wang, On generalized Lucas sequences, Contemp. Math. 531 (2010) 127-141, Table 1 (k=3).
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
-
CoefficientList[Series[(3 - 2 x - 2 x^2)/(1 - x - 2 x^2 + x^3), {x, 0, 33}], x] (* Michael De Vlieger, Aug 21 2019 *)
-
{a(n)=if(n>=0, n+=1; polsym(x^3-x^2-2*x+1,n-1)[n], n=1-n; polsym(1-x-2*x^2+x^3,n-1)[n])} /* Michael Somos, Aug 03 2006 */
-
a(n)=trace([0,1,0;1,0,1;0,1,1]^n); /* Joerg Arndt, Apr 30 2011 */
A187065
Let i be in {1,2,3} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3} = {-2,0,1}, n=2*r+p_i, and define a(-2)=1. Then, a(n)=a(2*r+p_i) gives the quantity of H_(7,1,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt(2*cos(Pi/7)).
Original entry on oeis.org
0, 0, 1, 0, 0, 1, 2, 1, 1, 3, 5, 4, 5, 9, 14, 14, 19, 28, 42, 47, 66, 89, 131, 155, 221, 286, 417, 507, 728, 924, 1341, 1652, 2380, 2993, 4334, 5373, 7753, 9707, 14041, 17460, 25213, 31501, 45542, 56714, 81927, 102256, 147798, 184183, 266110, 331981, 479779
Offset: 0
Suppose r=3. Then
A_r = A_3 = {a(2*r-2),a(2*r),a(2*r+1)} = {a(4),a(6),a(7)} = {0,2,1},
corresponding to the entries in the first column of
M = (U_2)^3 = (0 2 1)
(2 1 3)
(1 3 3).
Choose i=2 and set n=2*r+p_i. Then a(n) = a(2*r+p_i) = a(6+0) = a(6) = 2, which equals the entry in row 2 and column 1 of M. Hence a subdivided H_(7,2,3) tile should contain a(6) = m_(2,1) = 2 H_(7,1,0) tiles.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. Edson Jeffery, Unit-primitive matrices
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,2,0,-1).
-
I:=[0,0,1,0,0,1]; [n le 6 select I[n] else Self(n-2)+2*Self(n-4)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Sep 18 2015
-
LinearRecurrence[{0,1,0,2,0,-1},{0,0,1,0,0,1},50] (* Harvey P. Dale, Aug 15 2012 *)
CoefficientList[Series[x^2 (1 - x^2 + x^3)/(1 - x^2 - 2 x^4 + x^6), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
my(x='x+O('x^50)); concat([0,0], Vec(x^2*(1-x^2+x^3)/(1-x^2-2*x^4 +x^6))) \\ G. C. Greubel, Jan 29 2018
A216054
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 6, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 0, 5, 9, 5, 0, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, 0, 0, ... row n=5
0, 0, 0, 0, 0, 0, 131, 417, 924, 1652, 2380, 2380, 0, ... row n=6
...
- E. Lucas, Théorie des nombres, A.Blanchard, Paris, 1958, Tome 1, p.89
-
Clear[t]; t[0, k_ /; k <= 5] = 1; t[n_, k_] /; k < n || k > n+5 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
Showing 1-8 of 8 results.
Comments