cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A103376 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = 1 and for n>9: a(n) = a(n-8) + a(n-9).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 65, 71, 86, 106, 121, 127, 128, 128, 129, 136, 157, 192, 227, 248, 255, 256, 257, 265, 293
Offset: 1

Views

Author

Jonathan Vos Post, Feb 05 2005

Keywords

Comments

k=8 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373, k=6 case is A103374 and k=7 case is A103375.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=8 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^9 - x - 1 = 0. This is the real constant (to 50 digits accuracy): 1.0850702454914508283368958640973142340506536310308 = A230162. Note that x = (1 + x)^(1/9) = (1 + (1 + (1 + ...)^(1/9))^(1/9))^(1/9).
The sequence of prime values in this k=8 case is A103386; The sequence of semiprime values in this k=8 case is A103396.

Examples

			a(93) = 1200 because a(93) = a(93-8) + a(93-9) = a(85) + a(84) = 642 + 558.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 8; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 76]
    LinearRecurrence[{0,0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1,1},80] (* Harvey P. Dale, May 07 2015 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,1,0,0,0,0,0,0,0]^(n-1)*[1;1;1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x*(1+x)*(1+x^2)*(1+x^4)/(1-x^8-x^9). - R. J. Mathar, Dec 14 2009
a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=1, a(8)=1, a(9)=1, a(n)=a(n-8)+a(n-9). - Harvey P. Dale, May 07 2015

Extensions

Edited by Ray Chandler, Feb 10 2005

A103397 Semiprimes in A103377.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 8114, 8193, 16307, 16853, 17855, 19857, 31298, 68037, 104739, 124205, 131209, 134149, 140457, 152849, 252914, 259918, 265358, 274606, 417527, 2498871, 5291863, 8424051, 8743821
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Examples

			2071468241 is an element of A103377 and 2071468241= 17 * 121851073 which shows that it is a semiprime.
		

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; Clear[a]; k=9; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103377=Array[a, 100] A103387=Union[Select[Array[a, 1000], PrimeQ]] A103397=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^10 - x - 1 == 0, x], 111][[2]]

Formula

Intersection of A103377 with A001358.

A103633 Triangle read by rows: triangle of repeated stepped binomial coefficients.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0, 0, 0, 1, 6, 15
Offset: 0

Views

Author

Paul Barry, Feb 11 2005

Keywords

Comments

Row sums are Sum_{k=0..n} binomial(floor(n/2),n-k) = (1,1,2,2,4,4,...). Diagonal sums have g.f. (1+x^2)/(1-x^3-x^4) (see A079398). Matrix inverse of the signed triangle (-1)^(n-k)T(n,k) is A103631. Matrix inverse of T(n,k) is the alternating signed version of A103631.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ....] DELTA [1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 08 2005

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1,  1;
  0,  0,  1,  1;
  0,  0,  1,  2,  1;
  0,  0,  0,  1,  2,  1;
  0,  0,  0,  1,  3,  3,  1;
  0,  0,  0,  0,  1,  3,  3,  1;
  0,  0,  0,  0,  1,  4,  6,  4,  1;
  0,  0,  0,  0,  0,  1,  4,  6,  4,  1;
  0,  0,  0,  0,  0,  1,  5, 10, 10,  5,  1;
  0,  0,  0,  0,  0,  0,  1,  5, 10, 10,  5,  1;
  0,  0,  0,  0,  0,  0,  1,  6, 15, 20, 15,  6,  1; ...
		

Formula

Number triangle T(n, k) = binomial(floor(n/2), n-k).
Sum_{n>=0} T(n, k) = A000045(k+2) = Fibonacci(k+2). - Philippe Deléham, Oct 08 2005
Sum_{k=0..n} T(n,k) = 2^floor(n/2) = A016116(n). - Philippe Deléham, Dec 03 2006
G.f.: (1+x*y)/(1-x^2*y-x^2*y^2). - Philippe Deléham, Nov 10 2013
T(n,k) = T(n-2,k-1) + T(n-2,k-2) for n > 2, T(0,0) = T(,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Nov 10 2013

A376649 a(n) = Sum_{k=0..floor(n/3)} binomial(floor(k/3),n-3*k).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 2, 3, 3, 2, 3, 3, 2, 4, 6, 5, 5, 6, 5, 5, 6, 5, 6, 10, 11, 10, 11, 11, 10, 11, 11, 11, 16, 21, 21, 21, 22, 21, 21, 22, 22, 27, 37, 42, 42, 43, 43, 42, 43, 44, 49, 64, 79, 84, 85, 86, 85, 85, 87, 93, 113, 143
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(k\3, n-3*k));
    
  • PARI
    my(N=90, x='x+O('x^N)); Vec((1+x^3+x^6)/(1-x^9-x^10))

Formula

G.f.: (1-x^9)/((1-x^3) * (1-x^9-x^10)) = (1+x^3+x^6)/(1-x^9-x^10).
a(n) = a(n-9) + a(n-10).
a(n) = A017877(n) + A017877(n-3) + A017877(n-6).

A137166 Sequence equals its 4th differences shifted by one index.

Original entry on oeis.org

1, 3, 7, 15, 32, 70, 156, 349, 778, 1728, 3833, 8505, 18884, 41943, 93160, 206897, 459459, 1020311, 2265815, 5031792, 11174374, 24815508, 55108933, 122382762, 271780616, 603555049, 1340341377, 2976555532, 6610168495, 14679492624
Offset: 0

Views

Author

Keywords

Comments

Binomial transform yields A079398 without the initial (0,1,1,1). - R. J. Mathar, Apr 09 2008

Crossrefs

Cf. A079398.

Programs

  • Magma
    [n le 4 select 2^n-1 else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 15 2013
    
  • Mathematica
    s = ""; a = 0; b = 1; c = 1; d = 1; For[i = 0, i < 23, a = a + b; s = s <> ToString[a] <> ","; b = b + c; c = c + d; d = d + a; i++ ]; Print[s]
    LinearRecurrence[{4, -6, 5, -1}, {1, 3, 7, 15}, 40] (* Vincenzo Librandi, Jun 15 2013 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,5,-6,4]^n*[1;3;7;15])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = 4*a(n-1)-6*a(n-2)+5*a(n-3)-a(n-4). - R. J. Mathar, Apr 09 2008
G.f.: (x^2 - x + 1) / (x^4 - 5*x^3 + 6*x^2 - 4*x + 1). - Alexander R. Povolotsky, Apr 08 2008

Extensions

Edited by R. J. Mathar, Apr 09 2008
Edited by Bruno Berselli, Apr 07 2011

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A307677 a(0) = a(1) = a(2) = a(3) = 1; thereafter a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 9, 15, 27, 47, 83, 145, 255, 447, 785, 1377, 2417, 4241, 7443, 13061, 22921, 40223, 70587, 123871, 217379, 381473, 669439, 1174783, 2061601, 3617857, 6348897, 11141537, 19552035, 34311429, 60212361, 105665327, 185429723, 325406479, 571048563, 1002120369
Offset: 0

Views

Author

Joseph Damico, Apr 21 2019

Keywords

Comments

A079398, A103609, A003269, A306276, A126116, and A000288 are the other six sequences which have characteristic equations of the form x^4 = ax^3 + bx^2 + cx + 1 in which a, b, and c are equal to either 0 or 1 -- but not all three of them are equal to zero. (Each of those sequences begins with 1,1,1,1.)
A005251 has the same characteristic equation, and each successive term is determined by the same operation, namely, a(n) = a(n-1) + a(n-2) + a(n-4). However, it has different starting values: (0,1,1,1) instead of (1,1,1,1).
The characteristic equation of this sequence is x^4 = x^3 + x^2 + 1. Lim_{n->infinity} a(n+1)/a(n) = 1.754877666...

Crossrefs

Programs

  • Magma
    [n le 4 select 1 else Self(n-1) +Self(n-2) +Self(n-4): n in [1..51]]; // G. C. Greubel, Oct 23 2024
    
  • Mathematica
    LinearRecurrence[{1,1,0,1}, {1,1,1,1}, 51] (* G. C. Greubel, Oct 23 2024 *)
  • PARI
    Vec((1 - x^2 - x^3) / ((1 + x)*(1 - 2*x + x^2 - x^3)) + O(x^40)) \\ Colin Barker, Apr 25 2020
    
  • SageMath
    @CachedFunction # a = A307677
    def a(n): return 1 if n<4 else a(n-1) +a(n-2) +a(n-3)
    [a(n) for n in range(51)] # G. C. Greubel, Oct 23 2024

Formula

From Colin Barker, Apr 25 2020: (Start)
G.f.: (1 - x^2 - x^3) / ((1 + x)*(1 - 2*x + x^2 - x^3)).
a(n) = a(n-1) + a(n-2) + a(n-4) for n>3. (End)
a(n) = (1/5)*((-1)^n + 2*(2*A005314(n+1) - A005314(n) - 2*A005314(n-1))). - G. C. Greubel, Oct 23 2024

A376650 a(n) = Sum_{k=0..floor(n/4)} binomial(floor(k/3),n-4*k).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 2, 4, 6, 4, 2, 4, 6, 4, 2, 5, 10, 10, 6, 6, 10, 10, 6, 6, 10, 10, 6, 7, 15, 20, 16, 12, 16, 20, 16, 12, 16, 20, 16, 13, 22, 35, 36
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(k\3, n-4*k));
    
  • PARI
    my(N=90, x='x+O('x^N)); Vec((1+x^4+x^8)/(1-x^12-x^13))

Formula

G.f.: (1-x^12)/((1-x^4) * (1-x^12-x^13)) = (1+x^4+x^8)/(1-x^12-x^13).
a(n) = a(n-12) + a(n-13).

A385106 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) with a(1) = 1, a(2) = 2, a(3) = 4, and a(4) = 7.

Original entry on oeis.org

1, 2, 4, 7, 12, 21, 38, 70, 129, 236, 429, 778, 1412, 2567, 4672, 8505, 15478, 28158, 51217, 93160, 169465, 308290, 560852, 1020311, 1856132, 3376605, 6142582, 11174374, 20328113, 36980404, 67273829, 122382762, 222635316, 405011895, 736786328, 1340341377, 2438312358, 4435711166
Offset: 1

Views

Author

Hung Viet Chu, Jun 18 2025

Keywords

Comments

a(n) the number of subsets of {3, 6, 9, 12, ..., 3*n} that are Schreier and contain 3*n.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1,1},{1, 2, 4, 7},38 ] (* or *) Rest[CoefficientList[Series[x*(1 - x + x^2)/(1 - 3*x + 3*x^2 - x^3 - x^4),{x,0,38}],x]] (* or *) a[1]=1;a[n_]:=2 + Sum[Binomial[n-i-1,j],{i,n-2} ,{j,0,3i-2} ];Array[a,38] (* James C. McMahon, Jun 24 2025 *)

Formula

a(n) = 2 + Sum_{i=1..n-2} Sum_{j=0..3i-2} binomial(n-i-1,j), for n > 1.
a(n) = A079398(3*n).
G.f.: x*(1 - x + x^2)/(1 - 3*x + 3*x^2 - x^3 - x^4).

A321025 a(n) = sum of a(n-4) and a(n-5), with the lowest possible initial values that will generate a sequence where a(n) is always > a(n-1): 4, 5, 6, 7 and 8.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 20, 24, 28, 32, 37, 44, 52, 60, 69, 81, 96, 112, 129, 150, 177, 208, 241, 279, 327, 385, 449, 520, 606, 712, 834, 969, 1126, 1318, 1546, 1803, 2095, 2444, 2864, 3349, 3898, 4539, 5308, 6213, 7247, 8437, 9847, 11521, 13460, 15684
Offset: 1

Views

Author

Mathew Munro, Oct 30 2018

Keywords

Comments

A sum of prior terms in the sequence, like the Fibonacci and Padovan sequences.

Examples

			a(6) = a(6-4) + a(6-5) = a(2) + a(1) = 5 + 4 = 9.
		

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (4 + 5 x + 6 x^2 + 7 x^3 + 4 x^4)/(1 - x^4 - x^5), {x, 0, 54}], x] (* Michael De Vlieger, Oct 31 2018 *)
  • PARI
    a(n) = if(n<=5, n+3, a(n-4) + a(n-5)); \\ Michel Marcus, Oct 31 2018
    
  • PARI
    Vec((4 + 5*x + 6*x^2 + 7*x^3 + 4*x^4)/(1 - x^4 - x^5) + O(x^50)) \\ Andrew Howroyd, Oct 31 2018

Formula

a(n) = a(n-4) + a(n-5) with a(1) = 4, a(2) = 5, a(3) = 6, a(4) = 7 and a(5) = 8.
G.f.: x*(4 + 5*x + 6*x^2 + 7*x^3 + 4*x^4)/(1 - x^4 - x^5). - Andrew Howroyd, Oct 31 2018

Extensions

a(19), a(20) corrected by Georg Fischer, May 24 2019
Previous Showing 11-20 of 20 results.