cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A000909 a(n) = (2*n)!*(2*n+1)! / n!^2.

Original entry on oeis.org

1, 12, 720, 100800, 25401600, 10059033600, 5753767219200, 4487938430976000, 4577697199595520000, 5914384781877411840000, 9439358111876349296640000, 18236839872145106841108480000, 41944731705933745734549504000000
Offset: 0

Views

Author

Keywords

Comments

From Karol A. Penson, Jun 04 2009: (Start)
Integral representation of a(n) as n-th moment of a positive function W(x) = (1/4)*BesselK(1,(1/2)*sqrt(x))/Pi on the positive axis: a(n) = Integral_{x=0..oo} x^n*W(x) dx, n >= 0.
This is the solution of the Stieltjes moment problem with the moments a(n).
This solution may not be unique. (End)

References

  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.

Crossrefs

a(n) = 4^n * A079484(n+1).

Programs

A013069 Expansion of e.g.f.: exp(arcsinh(x)+log(x+1))=1+2*x+3/2!*x^2+3/3!*x^3-3/4!*x^4-15/5!*x^5...

Original entry on oeis.org

1, 2, 3, 3, -3, -15, 45, 315, -1575, -14175, 99225, 1091475, -9823275, -127702575, 1404728325, 21070924875, -273922023375, -4656674397375, 69850115960625, 1327152203251875, -22561587455281875
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Crossrefs

Cf. A046126.
a(2n) = (-1)^(n+1) * A079484(n), n>1.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[ArcSinh[x]+Log[x+1]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 15 2024 *)

Extensions

Definition clarified by Harvey P. Dale, Aug 15 2024

A046126 Denominators q[ n ] of convergents to Stern's non-simple continued fraction for Pi/2.

Original entry on oeis.org

1, 3, -3, -15, 45, 315, -1575, -14175, 99225, 1091475, -9823275, -127702575, 1404728325, 21070924875, -273922023375, -4656674397375, 69850115960625, 1327152203251875, -22561587455281875, -473793336560919375
Offset: 0

Views

Author

Keywords

Crossrefs

Numerators p[ n ] are (-1)^[n/2]*A001900(n). See also A013069.
Cf. A079484.

Programs

  • Mathematica
    b[ n_ ] := 2-(-1)^n; a[ 1 ] := -1; a[ n_Integer?EvenQ ] := -n(n+1); a[ n_Integer?OddQ ] := -(n-2)(n-1); then use the standard algorithm to get p[ n ]/q[ n ].
    a[n_] := Product[If[OddQ[k], k+2, 1-k], {k, 1, n}]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 06 2012, after 1st Pari program *)
  • PARI
    a(n)=if(n<0,0,prod(k=1,n,if(k%2,k+2,1-k)))
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=matrix(2,n+1); for(k=0, n, A[2, k+1]=if(k%2, 3, 1); A[1, k+1]=if(k<2, (-1)^k, if(k%2, -(k-2)*(k-1), -k*(k+1)))); contfracpnqn(A)[2,1])} /* Michael Somos, Jul 15 2003 */

Formula

E.g.f.: exp(asinh(x))((1+x)/(1+x^2)+(2-x+x^2)/(1+x^2)^(3/2))-2. - Michael Somos, Mar 11 2004
E.g.f.: (1+3*x+2*x^3)/(1+x^2)^(3/2). - Vaclav Kotesovec, Oct 05 2013
a(n) ~ 2*(cos(Pi*n/2)+sin(Pi*n/2)) * n^(n+1) / exp(n). - Vaclav Kotesovec, Oct 05 2013

A277354 a(n) = Product_{k=1..n} (4*k^2+1).

Original entry on oeis.org

1, 5, 85, 3145, 204425, 20646925, 2993804125, 589779412625, 151573309044625, 49261325439503125, 19753791501240753125, 9580588878101765265625, 5527999782664718558265625, 3742455852864014463945828125, 2937827844498251354197475078125
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2016

Keywords

Comments

In general, for m>0, Product_{k=1..n} (m*k^2+1) is asymptotic to 2*m^(n+1/2) * n^(2*n+1) * sinh(Pi/sqrt(m)) / exp(2*n).

Crossrefs

Programs

  • Mathematica
    Table[Product[4*k^2+1, {k, 1, n}], {n, 0, 15}]
    Round@Table[2^(2 n + 1) Abs[Gamma[1 + I/2 + n]]^2 Sinh[Pi/2]/Pi, {n, 0, 15}] (* Vladimir Reshetnikov, Oct 10 2016 *)
  • PARI
    a(n) = prod(k=1, n, (4*k^2+1)); \\ Michel Marcus, Oct 11 2016

Formula

a(n) = (-1)^(n+1) * A101928(n+2).
a(n) ~ 2^(2*n+2) * n^(2*n+1) * sinh(Pi/2) / exp(2*n).
a(n) = 2^(2*n+1) * |Gamma(1 + i/2 + n)|^2 * sinh(Pi/2)/Pi. - Vladimir Reshetnikov, Oct 10 2016

A120362 Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the second kind.

Original entry on oeis.org

1, 0, -1, 0, 4, -3, 0, -16, 60, -45, 0, 64, -1008, 2520, -1575, 0, -256, 16320, -105840, 189000, -99225, 0, 1024, -261888, 4055040, -15800400, 21829500, -9823275, 0, -4096, 4193280, -149909760, 1153152000, -3178375200, 3575672100, -1404728325, 0, 16384, -67104768, 5459650560
Offset: 1

Views

Author

R. J. Mathar, Jun 26 2006

Keywords

Comments

Table has only rows for odd h because all coefficients for even h are zero:
=====|=======================================================================
h \ s| 0 1 2 3 4 5 6
-----|-----------------------------------------------------------------------
1 | 1
3 | 0 -1
5 | 0 4 -3
7 | 0 -16 60 -45
9 | 0 64 -1008 2520 -1575
11 | 0 -256 16320 -105840 189000 -99225
13 | 0 1024 -261888 4055040 -15800400 21829500 -9823275
15 | 0 -4096 4193280 -149909760 1153152000 -3178375200 3575672100
17 | 0 16384 -67104768 5459650560 -79048569600 390486096000 -829555927200
...
From Francesco Franco, Jan 12 2016: (Start)
Conjecture:
If t(h,s) is any term of the previous table after the first column (s>0), then:
t(h,s) = -( 4*s^2*t(h-2,s) + Sum_{j=0..s-1} (t(h-2,j) + t(h,j)) ), with t(1,0) = 1, t(h,0) = 0 for h>1 and t(h,s) = 0 for odd h = 1..2*s-1.
Version without the summation:
t(h,s) = -( 4*s^2*t(h-2,s) - (4*(s-1)^2-1)*t(h-2,s-1) ).
Some example (starting from j=1 in the summation):
t(11,3) = -( 4*t(9,3)*3^2 + Sum_{j=1..2} (t(9,j) + t(11,j)) ) = -( 4*2520*9 + (64-256) + (-1008+16320) ) = -105840; second version:
t(17,5) = -( 4*5^2*t(15,5) - (4*4^2-1)*t(15,4) ) = -( 4*25*(-3178375200) - 63*1153152000 ) = 390486096000.
Also:
t(h,1) = (-1)^(h/2-1/2)*A000302(h/2-3/2) for h>1;
t(h,2) = (-1)^(h/2-3/2)*A115490(h/2-3/2) for h>3;
a(A000124(n)) = 0.
(End)

Examples

			E(m,phi) = phi - m*phi^3/3! + (4*m-3*m^2)*phi^5/5! + (-16*m+60*m^2-45*m^3)*phi^7/7! + ...
so the first row (order phi^1) is a(1,1)=1 for the coefficient of phi,
the second row (order phi^3) is a(2,0)=0 for the missing coefficient of m^0*phi^3, and a(2,1)=-1 for the coefficient of m^1*phi^3/3!.
		

Crossrefs

Cf. A010370, A079484 (diagonal).

Programs

  • Maple
    an := proc(m,n,s) local f: f := coeftayl(EllipticE(sin(phi),m^(1/2)),phi=0,n); coeftayl(f*n!,m=0,s) ; end: nmax := 27 ; for n from 1 to nmax by 2 do for s from 0 to (n-1)/2 do printf("%d,",an(m,n,s)) ; od ; od;
  • Mathematica
    a[n_, s_] := SeriesCoefficient[EllipticE[phi, m], {phi, 0, n}, {m, 0, s}]*n!; Table[a[n, s], {n, 1, 17, 2}, {s, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 06 2014 *)
  • PARI
    {T(n, k) = my(m = 2*n+1); if( k<0 || nMichael Somos, May 04 2017 */

Formula

E(m,phi) = Int_{theta=0..phi} sqrt(1-m*sin^2 theta) d theta.
E(m,phi) = Sum_{n=1,3,5,7,9,...} ( Sum_{s=0..(n-1)/2} a( (n+1)/2,s ) * m^s )*phi^n/n!.

A177698 Expansion of e.g.f.: sin(arctan(x)).

Original entry on oeis.org

0, 1, 0, -3, 0, 45, 0, -1575, 0, 99225, 0, -9823275, 0, 1404728325, 0, -273922023375, 0, 69850115960625, 0, -22561587455281875, 0, 9002073394657468125, 0, -4348001449619557104375, 0, 2500100833531245335015625, 0, -1687568062633590601135546875
Offset: 0

Views

Author

Michel Lagneau, May 11 2010

Keywords

Comments

Except periodic zeros for n even, and negative signs for n == 3 (mod 4), we find the same sequence as A079484 (determinant of M(2n-1) where M(k) is the k X k matrix with m(i,j)=j if i+j=k, m(i,j)=i otherwise).

Examples

			G.f. = x - 3*x^3 + 45*x^5 - 1575*x^7 + 99225*x^9 - 9823275*x^11 + ...
d^3y/dx^3 = 18/(1+x^2)^(5/2)*x^2 -3/(1+x^2)^(3/2) -15*x^4/(1+x^2)^(7/2).
For x = 0, we obtain a(3) = 0 - 3 + 0 = -3.
		

References

  • L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.

Crossrefs

Cf. A079484.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!(x/Sqrt(1+x^2))); // G. C. Greubel, Sep 25 2018
  • Maple
    a:= n-> n! * coeff(series(sin(arctan(x)), x, n+1), x, n):
    seq(a(n), n=0..30);
  • Mathematica
    Table[n!*SeriesCoefficient[x/Sqrt[1+x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 25 2013 *)
    With[{nn=30},CoefficientList[Series[Sin[ArcTan[x]],{x,0,nn}],x] Range[ 0,nn-1]!] (* Harvey P. Dale, Nov 30 2015 *)
    Join[{0}, Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == (n - 2 m)*y[m], y[0] == 1}]][n], {n, 1, 20}]] (* Benedict W. J. Irwin, Nov 03 2016 *)
    Join[{0}, Table[Re[-((I (2 I)^n Gamma[1 + n/2] Gamma[n/2])/Pi)], {n, 1, 20}]] (* Benedict W. J. Irwin, Nov 03 2016 *)
    a[ n_] := If[ EvenQ[n], 0, I^(n - 1) n!! (n - 2)!!]; (* Michael Somos, May 04 2017 *)
  • PARI
    {a(n) = if( n%2==0, 0, n<0, 1 / self()(-n), n! * binomial(n-1,n\2) * 2^(1-n) * (-1)^(n\2))}; /* Michael Somos, May 04 2017 */
    
  • PARI
    x='x+O('x^50); concat([0], Vec(x/sqrt(1+x^2))) \\ G. C. Greubel, Sep 25 2018
    

Formula

E.g.f.: sin(arctan(x)) = x/sqrt(1+x^2).
E.g.f.: x/(G(0)+x) where G(k)= 1 - 2*x/(1 + 1/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 08 2012
a(n) ~ 2*sin(Pi*n/2)*n^n/exp(n). - Vaclav Kotesovec, Sep 25 2013
From Benedict W. J. Irwin, Nov 03 2016: (Start)
a(n) = y(n,n), n>0, where y(m+1,n) = (n-2*m)*y(m,n), with y(0,n)=1, for all n.
a(n) = Real part of -i*(2*i)^n*Gamma(1 + n/2)*Gamma(n/2)/Pi. (End)
From Michael Somos, May 04 2017: (Start)
a(n) = -n * (n-2) * a(n-2) for all n in Z.
a(n) = 1 / a(-n) for all odd n in Z.
a(n) = n! * binomial(n-1,(n-1)/2) * 2^(1-n) * (-1)^((n-1)/2) if n is odd > 0.
a(2*n + 1) = (-1)^n * A079484(n). (End)

A296788 Expansion of e.g.f. exp(x*arcsinh(x)) (even powers only).

Original entry on oeis.org

1, 2, 8, 54, 104, 18810, -1648428, 247726374, -49445941200, 12841169289714, -4206667789245780, 1697448414191239710, -827415782970517712376, 479396168140498731959850, -325673237888367403728512700, 256401822876859593450127851030, -231597610351491427264049084814240
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Examples

			exp(x*arcsinh(x)) = 1 + 2*x^2/2! + 8*x^4/4! + 54*x^6/6! + 104*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Exp[x ArcSinh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 16; Table[(CoefficientList[Series[(x + Sqrt[1 + x^2])^x, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*arcsinh(x)).
a(n) ~ -(-1)^n * 2^(2*n) * n^(2*n-1) / exp(2*n + Pi/2). - Vaclav Kotesovec, Dec 21 2017

A306364 Triangular array of the number of binary, rooted, leaf-labeled tree topologies with n leaves and k cherries, n >= 2, 1 <= k <= floor(n/2).

Original entry on oeis.org

1, 3, 12, 3, 60, 45, 360, 540, 45, 2520, 6300, 1575, 20160, 75600, 37800, 1575, 181440, 952560, 793800, 99225, 1814400, 12700800, 15876000, 3969000, 99225, 19958400, 179625600, 314344800, 130977000, 9823275
Offset: 2

Views

Author

Noah A Rosenberg, Feb 10 2019

Keywords

Comments

A cherry is an internal node with exactly two descendant leaves. Each binary, rooted, leaf-labeled tree topology with n leaves has at least 1 cherry and at most floor(n/2) cherries.

Examples

			For n=4 leaves A, B, C, and D, a(4,1)=12 and a(4,2)=3. The 12 labeled topologies with 1 cherry are (((A,B),C),D), (((A,B),D),C), (((A,C),B),D), (((A,C),D),B), (((A,D),B),C), (((A,D),C),B), (((B,C),A),D), (((B,C),D),A), (((B,D),A),C), (((B,D),C),A), (((C,D),A),B), (((C,D),B),A). The 3 labeled topologies with 2 cherries are ((A,B),(C,D)), ((A,C),(B,D)), ((A,D),(B,C)).
Triangular array begins:
        1;
        3;
       12,        3;
       60,       45;
      360,      540,       45;
     2520,     6300,     1575;
    20160,    75600,    37800,    1575;
   181440,   952560,   793800,   99225;
  1814400, 12700800, 15876000, 3969000, 99225;
  ...
		

Crossrefs

Row sums equal A001147(n-1).
Column k=1 gives A001710.
T(2n,n) gives A079484(n-1).

Programs

  • Mathematica
    Table[n! (n - 2)!/(2^(2 k - 1) (n - 2 k)! k! (k - 1)!), {n, 2, 15}, {k, 1, Floor[n/2]}]

Formula

T(n,k) = n! (n-2)! / (2^(2k-1) (n-2k)! k! (k-1)! ).

A013155 Expansion of e.g.f. exp(arctanh(x)+log(x+1)).

Original entry on oeis.org

1, 2, 3, 6, 21, 90, 495, 3150, 23625, 198450, 1885275, 19646550, 225935325, 2809456650, 37927664775, 547844046750, 8491582724625, 139700231921250, 2444754058621875, 45123174910563750, 879901910755993125, 18004146789314936250, 387089155970271129375, 8696002899239114208750
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Examples

			G.f.= 1+2*x+3/2!*x^2+6/3!*x^3+21/4!*x^4+90/5!*x^5...
		

Crossrefs

a(2n+1) = 2 * A079484(n+1).

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[ArcTanh[x]+Log[x+1]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 05 2021 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(atanh(x)+log(x+1)))) \\ Christian Krause, Jan 05 2024

Formula

a(n) = 2*a(n-1) + ((2-n)^2-1)*a(n-2). - Christian Krause, Jan 05 2024

Extensions

Definition clarified by Harvey P. Dale, Oct 05 2021
Terms a(21) and beyond from Andrew Howroyd, Jan 05 2024

A211163 Numerator of (-1/Pi^n) * integral_{0..1} (log(1-1/x)^n) dx.

Original entry on oeis.org

2, 0, 8, 0, 32, 0, 128, 0, 2560, 0, 1415168, 0, 57344, 0, 118521856, 0, 5749735424, 0, 91546451968, 0, 1792043646976, 0, 1982765704675328, 0, 286994513002496, 0, 3187598700536922112, 0, 4625594563496048066560
Offset: 2

Views

Author

Jean-François Alcover, Jan 30 2013

Keywords

Comments

Conjecture: sequence of denominators is A141459.

Examples

			2*Pi^2/3, 0, 8*Pi^4/15, 0, 32*Pi^6/21, 0, 128*Pi^8/15, 0, 2560*Pi^10/33, ...
		

Crossrefs

Cf. A079484 (Gerry Martens's Pari program uses this integral).

Programs

  • Mathematica
    a[n_] := (-1/Pi^n)*Numerator[Integrate[Log[1 - 1/x]^n, {x, 0, 1}]]; Table[Print[an = a[n]]; an, {n, 2, 30}]
Previous Showing 11-20 of 21 results. Next