cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 121 results. Next

A114994 Numbers whose binary representation has monotonically decreasing sizes of groups of zeros (including zero-length groups between adjacent ones).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 23, 31, 32, 33, 34, 35, 36, 37, 39, 42, 43, 47, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 79, 85, 87, 95, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 143, 146, 147, 149, 151, 159, 170, 171, 175
Offset: 0

Views

Author

Keywords

Comments

Numbers whose binary representation avoids the sequences 110, 10100, 1001000, etc. Represents partitions. Start with empty partition and process each bit from left to right: if a zero, increase the size of the smallest part; if one, add a new size 1 part. This generates the partitions in Mathematica order. Can be regarded as a table with row lengths A000041(n); values 2^n <= a(m) < 2^(n+1) are in row n, representing the partitions of n. (Interpreting arbitrary binary numbers in this way generates compositions [also known as ordered partitions]; these are the compositions where the part sizes are in decreasing order of size.)
From Vladimir Shevelev, Dec 09 2013: (Start)
Every number in binary is a concatenation of parts of the form 10...0 with k>=0 zeros. For example, 5=(10)(1), 11=(10)(1)(1), 7=(1)(1)(1). Define c-multiplication [*] by adding multiplicities of parts (ordering by nonincreasing numbers of 0's). For example, 5[*]3=(10)(1)(1)(1)=23. Two numbers we call equivalent if they have the same parts with the same multiplicities. So 6~5, 12~9, 14~13~11.
The sequence lists equivalence classes of integers, choosing the minimal representative in each.
Note that, for two terms x,y we have x[*]y=y[*]x (commutativity), and for three terms x,y,z we have x[*](y[*]z)= (x[*]y)[*]z (associativity). 0 is the unit, i.e., 0[*]x=x. Moreover, one can consider different parts, i.e., {2^n} as "c-primes". Then every term is a unique "c-product" of "c-powers" of c-primes. For example, 7=(1)^3, 10=(10)^2, etc.
Further, one can naturally introduce "c-notions": c-divisor, c-divisibility, greatest common c-divisor of several numbers and least common c-multiple, Euler c-totient function (with notion of "r is c-prime to m"), etc.
Let x[+]y denote usual sum x+y in which we order parts over nonincreasing number of zeros. Then, of course, A114994 is closed over such operation. Then a(n+1) = a(n)[+]k, where k is the least number such that a(n)[+]k > a(n). For example, since a(10)=11, we have 11[+]1=9, 11[+]2=11, 11[+]3=11, 11[+]4=15>11. So, a(11)=15.
(End)

Examples

			21 is included, binary 10101 has group sizes 1,1,0; 22 is not, binary 10110 has group sizes 1,0,1, which includes an increase.
Applying bits of 21 in order gives sequence of partitions: [], [1], [2], [2,1], [2^2], [2^2,1], so 21 represents the partition [2^2,1].
From _Omar E. Pol_, Aug 04 2013: (Start)
The positive terms written as an irregular triangle begins:
   1;
   2,  3;
   4,  5,  7;
   8,  9, 10, 11, 15;
  16, 17, 18, 19, 21, 23, 31;
  32, 33, 34, 35, 36, 37, 39, 42, 43, 47, 63;
  64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 79, 85, 87, 95, 127;
  ...
Column 1 is A000079. Right border gives A000225, n >= 1.
T(n,k) represents the k-th partition of n. Example: for n = 5 the seven partitions of 5 (in Mathematica order) are represented in three ways as shown below. The last column (16, 17, 18, 19, 21, 23, 31) is also the 5th row of triangle.
-----------------------------------
Partitions      Binary     Decimal
of 5            number      value
-----------------------------------
5               10000        16
4+1             10001        17
3+2             10010        18
3+1+1           10011        19
2+2+1           10101        21
2+1+1+1         10111        23
1+1+1+1+1       11111        31
(End)
From _Peter J. C. Moses_, Dec 09 2013: (Start)
Let us illustrate an algorithm of calculation of all terms in interval of the form [2^k,2^(k+1)). Let k=5. Consider all integer partitions of 5+1=6 ordered over decreasing of maximal parts (see algorithm IntegerPartitions). We have: {{6},{5,1},{4,2},{4,1,1},{3,3},{3,2,1},{3,1,1,1},{2,2,2},{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}.
Now for every number, i, replace it with 1 followed by (i-1) 0's. So that becomes: {{1,0,0,0,0,0},{1,0,0,0,0,1},{1,0,0,0,1,0},{1,0,0,0,1,1},{1,0,0,1,0,0},{1,0,0,1,0,1},{1,0,0,1,1,1},{1,0,1,0,1,0},{1,0,1,0,1,1},{1,0,1,1,1,1},{1,1,1,1,1,1}}.
Finally, reading these as binary numbers with transformation of them into decimal, we obtain all terms in interval [32,64): {32,33,34,35,36,37,39,42,43,47,63}.
(End)
		

Crossrefs

Cf. also A227739, A227183 and permutation pair A229119/A229120 for another system of encoding unordered partitions in the binary representation of n.

Programs

  • Mathematica
    Select[Range[0, 200], FromDigits[Flatten[Sort[Split[IntegerDigits[#, 2], #1>#2||#2==0&], Length[#1]>Length[#2]&]], 2]==#&] (* Peter J. C. Moses, Dec 04 2013 *)
    f:=Map[IntegerDigits[2^(#-1), 2]&, #]&; Flatten[Map[Map[FromDigits[#, 2]&, Map[Flatten, f[IntegerPartitions[#]]]]&, Range[0, 10]]] (* Peter J. C. Moses, Dec 05 2013 *)
  • PARI
    is(n, k=0)=if(n==0, return(1)); my(e=valuation(n, 2)); if(e>(e+1), e)) \\ Charles R Greathouse IV, Dec 05 2013

Formula

For n>=0, 2n+1 is in the sequence iff n is in the sequence. For n>0, 2n is in the sequence iff both n is the sequence and, for some k>=0, n is congruent to 2^k mod 4^(k+1).
Number terms in interval [2^(n-1), 2^n) is A000041(n); number terms <2^n is A000070(n). - Vladimir Shevelev, Dec 06 2013

A211992 Triangle read by rows in which row n lists the partitions of n in colexicographic order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 4, 1, 3, 2, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 3, 2, 1, 5, 1, 2, 2, 2, 4, 2, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1, 5, 1, 1, 2, 2, 2, 1, 4, 2, 1, 3, 3, 1, 6, 1, 3, 2, 2, 5, 2, 4, 3, 7
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2012

Keywords

Comments

The order of the partitions of every integer is reversed with respect to A026792. For example: in A026792 the partitions of 3 are listed as [3], [2, 1], [1, 1, 1], however here the partitions of 3 are listed as [1, 1, 1], [2, 1], [3].
Row n has length A006128(n). Row sums give A066186. Right border gives A000027. The equivalent sequence for compositions (ordered partitions) is A228525. - Omar E. Pol, Aug 24 2013
The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is co-lexicographic. The equivalent sequence for partitions as (weakly) increasing lists and lexicographic order is A026791. - Joerg Arndt, Sep 02 2013

Examples

			From _Omar E. Pol_, Aug 24 2013: (Start)
Illustration of initial terms:
-----------------------------------------
n      Diagram          Partition
-----------------------------------------
.       _
1      |_|              1;
.       _ _
2      |_| |            1, 1,
2      |_ _|            2;
.       _ _ _
3      |_| | |          1, 1, 1,
3      |_ _| |          2, 1,
3      |_ _ _|          3;
.       _ _ _ _
4      |_| | | |        1, 1, 1, 1,
4      |_ _| | |        2, 1, 1,
4      |_ _ _| |        3, 1,
4      |_ _|   |        2, 2,
4      |_ _ _ _|        4;
.       _ _ _ _ _
5      |_| | | | |      1, 1, 1, 1, 1,
5      |_ _| | | |      2, 1, 1, 1,
5      |_ _ _| | |      3, 1, 1,
5      |_ _|   | |      2, 2, 1,
5      |_ _ _ _| |      4, 1,
5      |_ _ _|   |      3, 2,
5      |_ _ _ _ _|      5;
.       _ _ _ _ _ _
6      |_| | | | | |    1, 1, 1, 1, 1, 1,
6      |_ _| | | | |    2, 1, 1, 1, 1,
6      |_ _ _| | | |    3, 1, 1, 1,
6      |_ _|   | | |    2, 2, 1, 1,
6      |_ _ _ _| | |    4, 1, 1,
6      |_ _ _|   | |    3, 2, 1,
6      |_ _ _ _ _| |    5, 1,
6      |_ _|   |   |    2, 2, 2,
6      |_ _ _ _|   |    4, 2,
6      |_ _ _|     |    3, 3,
6      |_ _ _ _ _ _|    6;
...
Triangle begins:
[1];
[1,1], [2];
[1,1,1], [2,1], [3];
[1,1,1,1], [2,1,1], [3,1], [2,2], [4];
[1,1,1,1,1], [2,1,1,1], [3,1,1], [2,2,1], [4,1], [3,2], [5];
[1,1,1,1,1,1], [2,1,1,1,1], [3,1,1,1], [2,2,1,1], [4,1,1], [3,2,1], [5,1], [2,2,2], [4,2], [3,3], [6];
(End)
From _Gus Wiseman_, May 10 2020: (Start)
The triangle with partitions shown as Heinz numbers (A334437) begins:
    1
    2
    4   3
    8   6   5
   16  12  10   9   7
   32  24  20  18  14  15  11
   64  48  40  36  28  30  22  27  21  25  13
  128  96  80  72  56  60  44  54  42  50  26  45  33  35  17
(End)
		

Crossrefs

The graded reversed version is A026792.
The length-sensitive refinement is A036037.
The version for reversed partitions is A080576.
Partition lengths are A193173.
Partition maxima are A194546.
Partition minima are A196931.
The version for compositions is A228525.
The Heinz numbers of these partitions are A334437.

Programs

  • Mathematica
    colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
    Join@@Table[Sort[IntegerPartitions[n],colex],{n,0,6}] (* Gus Wiseman, May 10 2020 *)
  • PARI
    gen_part(n)=
    {  /* Generate partitions of n as weakly increasing lists (order is lex): */
        my(ct = 0);
        my(m, pt);
        my(x, y);
        \\ init:
        my( a = vector( n + (n<=1) ) );
        a[1] = 0;  a[2] = n;  m = 2;
        while ( m!=1,
            y = a[m] - 1;
            m -= 1;
            x = a[m] + 1;
            while ( x<=y,
                a[m] = x;
                y = y - x;
                m += 1;
            );
            a[m] = x + y;
            pt = vector(m, j, a[j]);
        /* for A026791 print partition: */
    \\        for (j=1, m, print1(pt[j],", ") );
        /* for A211992 print partition as weakly decreasing list (order is colex): */
            forstep (j=m, 1, -1, print1(pt[j],", ") );
            ct += 1;
        );
        return(ct);
    }
    for(n=1, 10, gen_part(n) );
    \\ Joerg Arndt, Sep 02 2013

A036037 Triangle read by rows in which row n lists all the parts of all the partitions of n, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 3, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

First differs from A334439 for partitions of 9. Namely, this sequence has (4,4,1) before (5,2,2), while A334439 has (5,2,2) before (4,4,1). - Gus Wiseman, May 08 2020
This is also a list of all the possible prime signatures of a number, arranged in graded colexicographic ordering. - N. J. A. Sloane, Feb 09 2014
This is also the Abramowitz-Stegun ordering of reversed partitions (A036036) if the partitions are reversed again after sorting. Partitions sorted first by sum and then colexicographically are A211992. - Gus Wiseman, May 08 2020

Examples

			First five rows are:
{{1}}
{{2}, {1, 1}}
{{3}, {2, 1}, {1, 1, 1}}
{{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
{{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}
Up to the fifth row, this is exactly the same as the reverse lexicographic ordering A080577. The first row which differs is the sixth one, which reads ((6), (5,1), (4,2), (3,3), (4,1,1), (3,2,1), (2,2,2), (3,1,1,1), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)). - _M. F. Hasler_, Jan 23 2020
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()         (3,2)        (2,1,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)
  (2)        (2,2,1)      (7)
  (1,1)      (2,1,1,1)    (6,1)
  (3)        (1,1,1,1,1)  (5,2)
  (2,1)      (6)          (4,3)
  (1,1,1)    (5,1)        (5,1,1)
  (4)        (4,2)        (4,2,1)
  (3,1)      (3,3)        (3,3,1)
  (2,2)      (4,1,1)      (3,2,2)
  (2,1,1)    (3,2,1)      (4,1,1,1)
  (1,1,1,1)  (2,2,2)      (3,2,1,1)
  (5)        (3,1,1,1)    (2,2,2,1)
  (4,1)      (2,2,1,1)    (3,1,1,1,1)
(End)
		

Crossrefs

See A036036 for the graded reflected colexicographic ("Abramowitz and Stegun" or Hindenburg) ordering.
See A080576 for the graded reflected lexicographic ("Maple") ordering.
See A080577 for the graded reverse lexicographic ("Mathematica") ordering: differs from a(48) on!
See A228100 for the Fenner-Loizou (binary tree) ordering.
See also A036038, A036039, A036040: (multinomial coefficients).
Partition lengths are A036043.
Reversing all partitions gives A036036.
The number of distinct parts is A103921.
Taking Heinz numbers gives A185974.
The version ignoring length is A211992.
The version for revlex instead of colex is A334439.
Lexicographically ordered reversed partitions are A026791.
Reverse-lexicographically ordered partitions are A080577.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n]],{n,8}] (* Gus Wiseman, May 08 2020 *)
    - or -
    colen[f_,c_]:=OrderedQ[{Reverse[f],Reverse[c]}];
    Join@@Table[Sort[IntegerPartitions[n],colen],{n,8}] (* Gus Wiseman, May 08 2020 *)

Extensions

Name corrected by Gus Wiseman, May 12 2020
Mathematica programs corrected to reflect offset of one and not zero by Robert Price, Jun 04 2020

A038547 Least number with exactly n odd divisors.

Original entry on oeis.org

1, 3, 9, 15, 81, 45, 729, 105, 225, 405, 59049, 315, 531441, 3645, 2025, 945, 43046721, 1575, 387420489, 2835, 18225, 295245, 31381059609, 3465, 50625, 2657205, 11025, 25515, 22876792454961, 14175, 205891132094649, 10395, 1476225, 215233605
Offset: 1

Views

Author

Keywords

Comments

Also least odd number with exactly n divisors. - Lekraj Beedassy, Aug 30 2006
a(2n-1) = {1, 9, 81, 729, 225, 59049, ...} are the squares. A122842(n) = sqrt(a(2n-1)) = {1, 3, 9, 27, 15, 243, 729, 45, 6561, 19683, 135, 177147, 225, 105, 4782969, 14348907, 1215, ...}. - Alexander Adamchuk, Sep 13 2006
Also the least number k such that there are n partitions of k whose elements are consecutive integers. I.e., 1=1, 3=1+2=3, 9=2+3+4=4+5=9, 15=1+2+3+4+5=4+5+6=7+8=15, etc. - Robert G. Wilson v, Jun 02 2007
The politeness of an integer, A069283(n), is defined to be the number of its nontrivial runsum representations, and the sequence 3, 9, 15, 81, 45, 729, 105, ... represents the least integers to have a politeness of 1, 2, 3, 4, ... This is also the sequence of smallest integers with n+1 odd divisors and so apart from the leading 1, is precisely this sequence. - Ant King, Sep 23 2009
a(n) is also the least number k with the property that the symmetric representation of sigma(k) has n subparts. - Omar E. Pol, Dec 31 2016

Examples

			a(2^3) = 105 = 3*5 while a(2^4) = 945 = 3^3 * 5 * 7. There are 5 partition lists for the exponents of numbers with 16 odd divisors; they are {1, 1, 1, 1}, {3, 1, 1}, {3, 3}, {7, 1}, and {15} that result in the 5 numbers 1155, 945, 3375, 10935, and 14348907. Number a(3^8) = a(6561) = 3^2 * 5^2 * ... * 19^2 * 23^2 = 12442607161209225 while a(3^9) = a(19683) = 3^8 * 5^2 * ... * 19^2 * 23^2 = 9070660620521525025. The numbers a(5^52) = 3^4 * 5^4 * 7^4 * ... and a(5^53) = 3^24 * 5^4 * 7^4 * ... have 393 and 402 digits, respectively.  - _Hartmut F. W. Hoft_, Nov 03 2022
		

Crossrefs

A122842 = sqrt( a(2n-1) ).
Row 1 of A266531. - Omar E. Pol, Dec 31 2016

Programs

  • Haskell
    import Data.List  (find)
    import Data.Maybe (fromJust)
    a038547 n = fromJust $ find ((== n) . length . divisors) [1,3..]
       where divisors m = filter ((== 0) . mod m) [1..m]
    -- Reinhard Zumkeller, Feb 24 2011
    
  • Mathematica
    Table[Select[Range[1,532000,2],DivisorSigma[0,#]==k+1 &,1],{k,0,15}]//Flatten (* Ant King, Nov 28 2010 *)
    2#-1&/@With[{ds=DivisorSigma[0,Range[1,600000,2]]},Table[Position[ds,n,1,1],{n,16}]]//Flatten (* The program is not suitable for generating terms beyond a(16) *) (* Harvey P. Dale, Jun 06 2017 *)
    (* direct computation of A038547(n) *)
    (* Function by _Vaclav Kotesovec_in A005179, Apr 04 2021, modified for odd divisors *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[mHartmut F. W. Hoft, Mar 05 2023 *)
  • PARI
    for(nd=1,15,forstep(k=1,10^66,2,if(nd==numdiv(k),print1(k,", ");break())))
    
  • Python
    from math import prod
    from sympy import isprime, divisors, prime
    def A038547(n):
        def mult_factors(n):
            if isprime(n):
                return [(n,)]
            c = []
            for d in divisors(n,generator=True):
                if 1Chai Wah Wu, Aug 17 2024

Formula

a(p) = 3^(p-1) for primes p. - Zak Seidov, Apr 18 2006
a(n) = A119265(n,n). - Reinhard Zumkeller, May 11 2006
It was suggested by Alexander Adamchuk that for all n >= 1, we have a(3^(n-1)) = (p(n)#/2)^2 = (A002110(n)/2)^2 = A070826(n)^2. But this is false! E.g., (p(n)#/2)^2 = 3^2 * 5^2 * 7^2 * ... * 23^2 * 29^2 does indeed have 3^9 odd factors, but it is greater than 3^8 * 5^2 * 7^2 * ... * 23^2 which has 9*3*3*3*3*3*3*3 = 9*3^7 = 3^9 odd factors. - Richard Sabey, Oct 06 2007
a(A053640(m)) = a(A000005(A053624(m))) = A053624(m). - Rick L. Shepherd, Apr 20 2008
a(p^k) = Product_{i=1..k} prime(i+1)^(p-1), p prime and k >= 0, only when p_(k+1) < 3^p. - Hartmut F. W. Hoft, Nov 03 2022

Extensions

Corrected by Ron Knott, Feb 22 2001
a(30) from Zak Seidov, Apr 18 2006
a(32)-a(34) from Lekraj Beedassy, Aug 30 2006

A026791 Triangle in which n-th row lists juxtaposed lexicographically ordered partitions of n; e.g., the partitions of 3 (1+1+1,1+2,3) appear as 1,1,1,1,2,3 in row 3.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 4, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 4, 1, 2, 3, 1, 5, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Differs from A080576 in a(18): Here, (...,1+3,2+2,4), there (...,2+2,1+3,4).
The representation of the partitions (for fixed n) is as (weakly) increasing lists of parts, the order between individual partitions (for the same n) is lexicographic (see example). - Joerg Arndt, Sep 03 2013
The equivalent sequence for compositions (ordered partitions) is A228369. - Omar E. Pol, Oct 19 2019

Examples

			First six rows are:
[[1]];
[[1, 1], [2]];
[[1, 1, 1], [1, 2], [3]];
[[1, 1, 1, 1], [1, 1, 2], [1, 3], [2, 2], [4]];
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 4], [2, 3], [5]];
[[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 2, 2], [1, 1, 4], [1, 2, 3], [1, 5], [2, 2, 2], [2, 4], [3, 3], [6]];
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms:
----------------------------------
.                     Ordered
n  j      Diagram     partition j
----------------------------------
.               _
1  1           |_|    1;
.             _ _
2  1         | |_|    1, 1,
2  2         |_ _|    2;
.           _ _ _
3  1       | | |_|    1, 1, 1,
3  2       | |_ _|    1, 2,
3  3       |_ _ _|    3;
.         _ _ _ _
4  1     | | | |_|    1, 1, 1, 1,
4  2     | | |_ _|    1, 1, 2,
4  3     | |_ _ _|    1, 3,
4  4     |   |_ _|    2, 2,
4  5     |_ _ _ _|    4;
...
(End)
		

Crossrefs

Row lengths are given in A006128.
Partition lengths are in A193173.
Row lengths are A000041.
Partition sums are A036042.
Partition minima are A196931.
Partition maxima are A194546.
The reflected version is A211992.
The length-sensitive version (sum/length/lex) is A036036.
The colexicographic version (sum/colex) is A080576.
The version for non-reversed partitions is A193073.
Compositions under the same ordering (sum/lex) are A228369.
The reverse-lexicographic version (sum/revlex) is A228531.
The Heinz numbers of these partitions are A334437.

Programs

  • Maple
    T:= proc(n) local b, ll;
          b:= proc(n,l)
                if n=0 then ll:= ll, l[]
              else seq(b(n-i, [l[], i]), i=`if`(l=[],1,l[-1])..n)
                fi
              end;
          ll:= NULL; b(n, []); ll
        end:
    seq(T(n), n=1..8);  # Alois P. Heinz, Jul 16 2011
  • Mathematica
    T[n0_] := Module[{b, ll}, b[n_, l_] := If[n == 0, ll = Join[ll, l], Table[ b[n - i, Append[l, i]], {i, If[l == {}, 1, l[[-1]]], n}]]; ll = {}; b[n0, {}]; ll]; Table[T[n], {n, 1, 8}] // Flatten (* Jean-François Alcover, Aug 05 2015, after Alois P. Heinz *)
    Table[DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions[n]], x_ /; x == 0, 2], {n, 7}] // Flatten (* Robert Price, May 18 2020 *)
  • Python
    t = [[[]]]
    for n in range(1, 10):
        p = []
        for minp in range(1, n):
            p += [[minp] + pp for pp in t[n-minp] if min(pp) >= minp]
        t.append(p + [[n]])
    print(t)
    # Andrey Zabolotskiy, Oct 18 2019

A193073 Triangle in which n-th row lists all partitions of n, in graded lexicographical ordering.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 3, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 3, 2, 1, 3, 3, 4, 1, 1, 4, 2, 5, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

M. F. Hasler, Jul 15 2011

Keywords

Comments

The partitions of the integer n are sorted in lexicographical order (cf. link: sums are written with terms in decreasing order, then they are sorted in lexicographical (increasing) order), i.e., as [1,1,...,1], [2,1,...,1], [2,2,...], ..., [n].

Examples

			First five rows are:
[[1]]
[[1, 1], [2]]
[[1, 1, 1], [2, 1], [3]]
[[1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4]]
[[1, 1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1], [3, 1, 1], [3, 2], [4, 1], [5]]
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()           (2,2,1)        (5,1)            (5,2)
  (1)          (3,1,1)        (6)              (6,1)
  (1,1)        (3,2)          (1,1,1,1,1,1,1)  (7)
  (2)          (4,1)          (2,1,1,1,1,1)    (1,1,1,1,1,1,1,1)
  (1,1,1)      (5)            (2,2,1,1,1)      (2,1,1,1,1,1,1)
  (2,1)        (1,1,1,1,1,1)  (2,2,2,1)        (2,2,1,1,1,1)
  (3)          (2,1,1,1,1)    (3,1,1,1,1)      (2,2,2,1,1)
  (1,1,1,1)    (2,2,1,1)      (3,2,1,1)        (2,2,2,2)
  (2,1,1)      (2,2,2)        (3,2,2)          (3,1,1,1,1,1)
  (2,2)        (3,1,1,1)      (3,3,1)          (3,2,1,1,1)
  (3,1)        (3,2,1)        (4,1,1,1)        (3,2,2,1)
  (4)          (3,3)          (4,2,1)          (3,3,1,1)
  (1,1,1,1,1)  (4,1,1)        (4,3)            (3,3,2)
  (2,1,1,1)    (4,2)          (5,1,1)          (4,1,1,1,1)
The triangle with partitions shown as Heinz numbers (A334434) begins:
    1
    2
    4   3
    8   6   5
   16  12   9  10   7
   32  24  18  20  15  14  11
   64  48  36  27  40  30  25  28  21  22  13
  128  96  72  54  80  60  45  50  56  42  35  44  33  26  17
(End)
		

Crossrefs

See A036036 for the Hindenburg (graded reflected colexicographic) ordering (listed in the Abramowitz and Stegun Handbook).
See A036037 for graded colexicographic ordering.
See A080576 for the Maple (graded reflected lexicographic) ordering.
See A080577 for the Mathematica (graded reverse lexicographic) ordering.
See A228100 for the Fenner-Loizou (binary tree) ordering.
A006128 gives row lengths.
Row n has A000041(n) partitions.
The version for reversed (weakly increasing) partitions is A026791.
Lengths of these partitions appear to be A049085.
Taking colex instead of lex gives A211992.
The generalization to compositions is A228351.
Sorting partitions by Heinz number gives A296150.
The length-sensitive refinement is A334301.
The Heinz numbers of these partitions are A334434.

Programs

  • Mathematica
    row[n_] := Flatten[Reverse[Reverse /@ SplitBy[IntegerPartitions[n], Length] ], 1]; Array[row, 19] // Flatten (* Jean-François Alcover, Dec 05 2016 *)
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Join@@Table[Sort[IntegerPartitions[n],lexsort],{n,0,8}] (* Gus Wiseman, May 08 2020 *)
  • PARI
    A193073_row(n)=concat(vecsort(apply(P->Vec(vecsort(P,,4)),partitions(n)))) \\ The two vecsort() are needed since the PARI function (version >= 2.7.1) yields the partitions in Abramowitz-Stegun order: sorted by increasing length, decreasing largest part, then lex order, with parts in increasing order. - M. F. Hasler, Jun 04 2018 [replaced older code from Jul 12 2015]
    
  • Sage
    def p(n, i):
        if n==0 or i==1: return [[1]*n]
        T = [[i] + x for x in p(n-i, i)] if i<=n else []
        return p(n, i-1) + T
    A193073 = lambda n: p(n,n)
    for n in (1..5): print(A193073(n)) # Peter Luschny, Aug 07 2015

A124734 Table with all compositions sorted first by total, then by length and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 4, 1, 3, 2, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 1, 4, 2, 3, 3, 2, 4, 1, 1, 1, 3, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 1, 1, 4, 1, 2, 3, 1, 3, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Keywords

Comments

This is similar to the Abramowitz and Stegun ordering for partitions (see A036036). The standard ordering for compositions is A066099, which is more similar to the Mathematica partition ordering (A080577).
This can be regarded as a table in two ways: with each composition as a row, or with the compositions of each integer as a row. The first way has A124736 as row lengths and A070939 as row sums; the second has A001792 as row lengths and A001788 as row sums.
This sequence includes every finite sequence of positive integers.

Examples

			The table starts:
1
2; 1 1
3; 1 2; 2 1; 1 1 1
4; 1 3; 2 2; 3 1; 1 1 2; 1 2 1; 2 1 1; 1 1 1 1;
		

Crossrefs

Programs

  • Mathematica
    Table[Sort@Flatten[Permutations /@ IntegerPartitions@n, 1], {n, 8}] // Flatten (* Robert Price, Jun 13 2020 *)

A026792 List of juxtaposed reverse-lexicographically ordered partitions of the positive integers.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 5, 1, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 6, 1, 3, 3, 1, 4, 2, 1, 2, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 2, 1
Offset: 1

Views

Author

Keywords

Comments

The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is (list-)reversed lexicographic; see examples. [Joerg Arndt, Sep 03 2013]
Written as a triangle; row n has length A006128(n); row sums give A066186. Also written as an irregular tetrahedron in which T(n,j,k) is the k-th largest part of the j-th partition of n; the sum of column k in the slice n is A181187(n,k); right border of the slices gives A182715. - Omar E. Pol, Mar 25 2012
The equivalent sequence for compositions (ordered partitions) is A228351. - Omar E. Pol, Sep 03 2013
This is the reverse-colexicographic order of integer partitions, or the reflected reverse-lexicographic order of reversed integer partitions. It is not reverse-lexicographic order (A080577), wherein we would have (3,1) before (2,2). - Gus Wiseman, May 12 2020

Examples

			E.g. the partitions of 3 (3,2+1,1+1+1) appear as the string 3,2,1,1,1,1.
So the list begins:
1
2, 1, 1,
3, 2, 1, 1, 1, 1,
4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1,
5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms:
---------------------------------
n  j     Diagram     Partition
---------------------------------
.         _
1  1     |_|         1;
.         _ _
2  1     |_  |       2,
2  2     |_|_|       1, 1;
.         _ _ _
3  1     |_ _  |     3,
3  2     |_  | |     2, 1,
3  3     |_|_|_|     1, 1, 1;
.         _ _ _ _
4  1     |_ _    |   4,
4  2     |_ _|_  |   2, 2,
4  3     |_ _  | |   3, 1,
4  4     |_  | | |   2, 1, 1,
4  5     |_|_|_|_|   1, 1, 1, 1;
...
(End)
From _Gus Wiseman_, May 12 2020: (Start)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows. Showing these partitions as their Heinz numbers gives A334436.
                             0
                            (1)
                          (2)(11)
                        (3)(21)(111)
                   (4)(22)(31)(211)(1111)
             (5)(32)(41)(221)(311)(2111)(11111)
  (6)(33)(42)(222)(51)(321)(411)(2211)(3111)(21111)(111111)
(End)
		

Crossrefs

The reflected version for reversed partitions is A080577.
The partition minima appear to be A182715.
The graded reversed version is A211992.
The version for compositions is A228351.
The Heinz numbers of these partitions are A334436.

Programs

  • Mathematica
    revcolex[f_,c_]:=OrderedQ[PadRight[{Reverse[c],Reverse[f]}]];
    Join@@Table[Sort[IntegerPartitions[n],revcolex],{n,0,8}] (* reverse-colexicographic order, Gus Wiseman, May 10 2020 *)
    - or -
    revlex[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n],revlex],{n,0,8}] (* reflected reverse-lexicographic order, Gus Wiseman, May 12 2020 *)

Extensions

Terms 81st, 83rd and 84th corrected by Omar E. Pol, Aug 16 2009

A334439 Irregular triangle whose rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 03 2020

Keywords

Comments

First differs from A036037 for partitions of 9. Namely, this sequence has (5,2,2) before (4,4,1), while A036037 has (4,4,1) before (5,2,2).
This is the Abramowitz-Stegun ordering of integer partitions (A334301) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334302.

Examples

			The sequence of all partitions begins:
  ()      (32)     (21111)   (22111)    (4211)      (63)
  (1)     (311)    (111111)  (211111)   (3311)      (54)
  (2)     (221)    (7)       (1111111)  (3221)      (711)
  (11)    (2111)   (61)      (8)        (2222)      (621)
  (3)     (11111)  (52)      (71)       (41111)     (531)
  (21)    (6)      (43)      (62)       (32111)     (522)
  (111)   (51)     (511)     (53)       (22211)     (441)
  (4)     (42)     (421)     (44)       (311111)    (432)
  (31)    (33)     (331)     (611)      (221111)    (333)
  (22)    (411)    (322)     (521)      (2111111)   (6111)
  (211)   (321)    (4111)    (431)      (11111111)  (5211)
  (1111)  (222)    (3211)    (422)      (9)         (4311)
  (5)     (3111)   (2221)    (332)      (81)        (4221)
  (41)    (2211)   (31111)   (5111)     (72)        (3321)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
                  0
                 (1)
               (2)(11)
             (3)(21)(111)
        (4)(31)(22)(211)(1111)
  (5)(41)(32)(311)(221)(2111)(11111)
Showing partitions as their Heinz numbers (see A334438) gives:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
		

Crossrefs

The version for colex instead of revlex is A036037.
Row lengths are A036043.
Ignoring length gives A080577.
Number of distinct elements in row n appears to be A103921(n).
The version for compositions is A296774.
The Abramowitz-Stegun version (sum/length/lex) is A334301.
The version for reversed partitions is A334302.
Taking Heinz numbers gives A334438.
The version with partitions reversed is A334442.
Lexicographically ordered reversed partitions are A026791.
Lexicographically ordered partitions are A193073.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

A185974 Partitions in Abramowitz-Stegun order A036036 mapped one-to-one to positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 25, 28, 30, 27, 40, 36, 48, 64, 17, 26, 33, 35, 44, 42, 50, 45, 56, 60, 54, 80, 72, 96, 128, 19, 34, 39, 55, 49, 52, 66, 70, 63, 75, 88, 84, 100, 90, 81, 112, 120, 108, 160, 144, 192, 256, 23, 38, 51, 65, 77, 68, 78, 110, 98, 99, 105, 125, 104, 132, 140, 126, 150, 135, 176, 168, 200, 180, 162, 224, 240, 216, 320, 288, 384, 512, 29, 46, 57, 85, 91, 121, 76, 102, 130, 154, 117, 165, 147, 175, 136, 156, 220, 196, 198, 210, 250, 189, 225, 208, 264, 280, 252, 300, 270, 243, 352, 336, 400, 360, 324, 448, 480, 432, 640, 576, 768, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Feb 10 2011

Keywords

Comments

First differs from A334438 (shifted left once) at a(75) = 98, A334438(76) = 99. - Gus Wiseman, May 20 2020
This mapping of the set of all partitions of N >= 0 to {1, 2, 3, ...} (set of natural numbers) is one to one (bijective). The empty partition for N = 0 maps to 1.
A129129 seems to be analogous, except that the partition ordering A080577 is used. This ordering, however, does not care about the number of parts: e.g., 1^2,4 = 4,1^2 comes before 3^2, so a(23)=28 and a(22)=25 are interchanged.
Also Heinz numbers of all reversed integer partitions (finite weakly increasing sequences of positive integers), sorted first by sum, then by length, and finally lexicographically, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The version for non-reversed partitions is A334433. - Gus Wiseman, May 20 2020

Examples

			a(22) = 25 = prime(3)^2 because the 22nd partition in A-St order is the 2-part partition (3,3) of N = 6, because A026905(5) = 18 < 22 <= A026905(6) = 29.
a(23) = 28 = prime(1)^2*prime(4) corresponds to the partition 1+1+4 = 4+1+1 with three parts, also of N = 6.
From _Gus Wiseman_, May 20 2020: (Start)
Triangle begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
As a triangle of reversed partitions we have:
                             0
                            (1)
                          (2)(11)
                        (3)(12)(111)
                   (4)(13)(22)(112)(1111)
             (5)(14)(23)(113)(122)(1112)(11111)
  (6)(15)(24)(33)(114)(123)(222)(1113)(1122)(11112)(111111)
(End)
		

Crossrefs

Row lengths are A000041.
The constructive version is A036036.
Also Heinz numbers of the partitions in A036037.
The generalization to compositions is A124734.
The version for non-reversed partitions is A334433.
The non-reversed length-insensitive version is A334434.
The opposite version (sum/length/revlex) is A334435.
Ignoring length gives A334437.
Sorting reversed partitions by Heinz number gives A112798.
Partitions in lexicographic order are A193073.
Partitions in colexicographic order are A211992.
Graded Heinz numbers are A215366.

Programs

  • Mathematica
    Join@@Table[Times@@Prime/@#&/@Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 21 2020 *)
  • PARI
    A185974_row(n)=[vecprod([prime(i)|i<-p])|p<-partitions(n)] \\ below a helper function:
    index_of_partition(n)={for(r=0, oo, my(c = numbpart(r)); n >= c || return([r,n+1]); n -= c)}
    /* A185974(n,k), 1 <= k <= A000041(n), gives the k-th partition of n >= 0; if k is omitted, A185974(n) return the term of index n of the flattened sequence a(n >= 0).
      This function is used in other sequences (such as A122172) which need to access the n-th partition as listed in A-S order. */
    A185974(n, k=index_of_partition(n))=A185974_row(iferr(k[1], E, k=[k,k]; n))[k[2]] \\ (End)

Formula

a(n) = Product_{j=1..N(n)} p(j)^e(j), with p(j):=A000040(j) (j-th prime), and the exponent e(j) >= 0 of the part j in the n-th partition written in Abramowitz-Stegun (A-St) order, indicated in A036036. Note that j^0 is not 1 but has to be omitted in the partition. N(n) is the index (argument) of the smallest A026905-number greater than or equal to n (the index of the A026905-ceiling of n).
From Gus Wiseman, May 21 2020: (Start)
A001221(a(n)) = A103921(n).
A001222(a(n)) = A036043(n).
A056239(a(n)) = A036042(n).
A061395(a(n)) = A049085(n).
(End)

Extensions

Examples edited by M. F. Hasler, Jan 07 2024
Previous Showing 21-30 of 121 results. Next