A215652
Exponential Riordan array [exp(x*exp(-x)),x].
Original entry on oeis.org
1, 1, 1, -1, 2, 1, -2, -3, 3, 1, 9, -8, -6, 4, 1, -4, 45, -20, -10, 5, 1, -95, -24, 135, -40, -15, 6, 1, 414, -665, -84, 315, -70, -21, 7, 1, 49, 3312, -2660, -224, 630, -112, -28, 8, 1, -10088, 441, 14904, -7980, -504, 1134, -168, -36, 9, 1
Offset: 0
Triangle begins
.n\k.|....0.....1.....2.....3.....4.....5.....6.....7
= = = = = = = = = = = = = = = = = = = = = = = = = = =
..0..|....1
..1..|....1.....1
..2..|...-1.....2.....1
..3..|...-2....-3.....3.....1
..4..|....9....-8....-6.....4.....1
..5..|...-4....45...-20...-10.....5.....1
..6..|..-95...-24...135...-40...-15.....6.....1
..7..|..414..-665...-84...315...-70...-21.....7.....1
...
-
max = 9; MapIndexed[ Take[#1, #2[[1]]]&, CoefficientList[ Series[ Exp[x*t]*Exp[x*Exp[-x]], {x, 0, max}, {t, 0, max}], {x, t}]*Range[0, max]!, 1] // Flatten (* Jean-François Alcover, Jan 08 2013 *)
A089460
Triangle, read by rows, of coefficients for the second iteration of the hyperbinomial transform.
Original entry on oeis.org
1, 2, 1, 8, 4, 1, 50, 24, 6, 1, 432, 200, 48, 8, 1, 4802, 2160, 500, 80, 10, 1, 65536, 28812, 6480, 1000, 120, 12, 1, 1062882, 458752, 100842, 15120, 1750, 168, 14, 1, 20000000, 8503056, 1835008, 268912, 30240, 2800, 224, 16, 1, 428717762, 180000000, 38263752, 5505024, 605052, 54432, 4200, 288, 18, 1
Offset: 0
Rows begin:
{1},
{2,1},
{8,4,1},
{50,24,6,1},
{432,200,48,8,1},
{4802,2160,500,80,10,1},
{65536,28812,6480,1000,120,12,1},
{1062882,458752,100842,15120,1750,168,14,1},..
-
Join[{1}, Table[Binomial[n, k]*2*(n - k + 2)^(n - k - 1), {n, 1, 49}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 18 2017 *)
-
for(n=0,10, for(k=0,n, print1(2*(n-k+2)^(n-k-1)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 18 2017
A089467
Hyperbinomial transform of A089466 and also the inverse hyperbinomial transform of A089468.
Original entry on oeis.org
1, 2, 8, 52, 478, 5706, 83824, 1461944, 29510268, 676549450, 17361810016, 492999348348, 15345359136232, 519525230896322, 19005788951346240, 747102849650454256, 31404054519248544016, 1405608808807797838866, 66741852193123060505728, 3350816586986433907218500, 177352811048578736727396576
Offset: 0
-
Flatten[{1, Table[Sum[Sum[Binomial[m, j] * Binomial[n, n-m-j] * n^(n-m-j) * (m+j)! / (-2)^j / m!, {j,0,m}], {m,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, Oct 11 2020 *)
-
a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!))
A089900
Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the factorials, starting with row 0: {1!,2!,3!,...}.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 24, 11, 4, 1, 120, 49, 18, 5, 1, 720, 261, 92, 27, 6, 1, 5040, 1631, 536, 159, 38, 7, 1, 40320, 11743, 3552, 1029, 256, 51, 8, 1, 362880, 95901, 26608, 7353, 1848, 389, 66, 9, 1, 3628800, 876809, 223456, 58095, 14384, 3125, 564, 83, 10, 1
Offset: 0
Note secondary diagonal: {(n+1)^(n+1)}; rows begin:
1, 2,. 6,. 24,. 120,.. 720,.. 5040,..
1, 3, 11,. 49,. 261,. 1631,. 11743,..
1,_4, 18,. 92,. 536,. 3552,. 26608,..
1, 5,_27, 159, 1029,. 7353,. 58095,..
1, 6, 38,_256, 1848, 14384, 121264,..
1, 7, 51, 389,_3125, 26595, 241015,..
1, 8, 66, 564, 5016,_46656, 456048,..
1, 9, 83, 787, 7701, 78077,_823543,..
-
t[n_, k_] := (n^(k+2) - Exp[n]*(n-k-1)*Gamma[k+2, n])/(k+1) // Round; Table[t[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jun 24 2013 *)
-
T(n,k)=if(n<0 || k<0,0,sum(i=0,k,n^(k-i)*binomial(k,i)*(i+1)!))
A218496
4th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 5, 33, 281, 2993, 38705, 592489, 10516441, 212841889, 4845154913, 122664558905, 3421333467689, 104297273041969, 3451364116327249, 123251578626936841, 4725537745859375705, 193647372258547916609, 8447809104669814884545, 390938955429073736493145
Offset: 0
A218497
5th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 6, 46, 441, 5156, 71801, 1166886, 21756251, 458803176, 10814534541, 282098765426, 8074875680471, 251807768368956, 8501320507058801, 309046115586282726, 12039399243732745851, 500492026353038459216, 22119195334250297991701, 1035767312348853244634586
Offset: 0
-
a:= n-> add(5*(n-j+5)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[5*(n-j+5)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
A218498
6th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 7, 61, 649, 8257, 123217, 2120545, 41484625, 911339617, 22249542241, 598364232529, 17591851634353, 561695417002225, 19366094448215665, 717377453802538753, 28423991158962139873, 1199873992182732076225, 53772852099331738315969, 2550272224743737587911025
Offset: 0
-
a:= n-> add(6*(n-j+6)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[6*(n-j+6)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
A218499
7th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 8, 78, 911, 12524, 199403, 3624706, 74300269, 1699264792, 42964199279, 1191492782054, 35994106307321, 1177389200637028, 41482632276082915, 1566911405137366450, 63190697224460246477, 2710704012199936430000, 123277690401078017104343, 5925900498827152433216446
Offset: 0
-
a:= n-> add(7*(n-j+7)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[7*(n-j+7)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
A218500
8th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 9, 97, 1233, 18209, 308129, 5901489, 126560849, 3010775745, 78805945665, 2253470828561, 69959985025841, 2345132738183841, 84468280694319713, 3254988169237833585, 133676275015986223569, 5830402582814375609729, 269227430712934320151169
Offset: 0
-
a:= n-> add(8*(n-j+8)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[8*(n-j+8)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
With[{nn=20},CoefficientList[Series[Exp[x](-LambertW[-x]/x)^8,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 04 2019 *)
A218501
9th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 10, 118, 1621, 25588, 458605, 9232894, 206835751, 5113191304, 138473150833, 4081818946330, 130223467785619, 4473867764956204, 164772507070721989, 6479598382677480286, 271083794667222927655, 12026359894442420178064, 564099525344446492486105
Offset: 0
-
a:= n-> add(9*(n-j+9)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[9*(n-j+9)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
Comments