cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A081085 Expansion of 1 / AGM(1, 1 - 8*x) in powers of x.

Original entry on oeis.org

1, 4, 20, 112, 676, 4304, 28496, 194240, 1353508, 9593104, 68906320, 500281280, 3664176400, 27033720640, 200683238720, 1497639994112, 11227634469668, 84509490017680, 638344820152784, 4836914483890112, 36753795855173776, 279985580271435584, 2137790149251471680
Offset: 0

Views

Author

Michael Somos, Mar 04 2003

Keywords

Comments

AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre.
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
This is the exponential (also known as binomial) convolution of sequence A000984 (central binomial) with itself. See the V. Jovovic e.g.f. and a(n) formulas given below. - Wolfdieter Lang, Jan 13 2012
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
The recursion (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1) with n=0 has zero coefficient for a(-1) and thus a(-1) is not determined uniquely by it, but defining a(-1) = 2^(-5/2) makes a(n) = a(-1-n) * 32^(n-1/2) true for all n in Z. - Michael Somos, Apr 05 2022

Examples

			G.f. = A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 676*x^4 + 4304*x^5 + 28496*x^6 + ...
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    seq(simplify(binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1)), n = 0..22); # Peter Bala, Jul 25 2024
  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[2*n-2*k,n-k]*Binomial[2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1/2, 1, 16 x (1 - 4 x)], {x, 0, n}]; (* Michael Somos, Oct 25 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 1 / NestWhile[ {(#[[1]] + #[[2]])/2, Sqrt[#[[1]] #[[2]]]} &, {1, Series[ 1 - 8 x, {x, 0, n}]}, #[[1]] =!= #[[2]] &] // First, {x, 0, n}]]; (* Michael Somos, Oct 27 2014 *)
    CoefficientList[Series[2*EllipticK[1/(1 - 1/(4*x))^2] / (Pi*(1 - 4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 13 2019 *)
    a[n_] := Binomial[2 n, n] HypergeometricPFQ[{1/2, -n, -n},{1, 1/2 - n}, -1];
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 05 2022 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 8 * x + x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0,0, 4^n * sum( k=0, n\2, binomial( n, 2*k) * binomial( 2*k, k)^2 / 16^k))};
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,(2*k)!*x^k/(k!)^3 +x*O(x^n))^2,n)} /* Paul D. Hanna, Sep 04 2009 */
    
  • Python
    from math import comb
    def A081085(n): return sum((1<<(n-(m:=k<<1)<<1))*comb(n,m)*comb(m,k)**2 for k in range((n>>1)+1)) # Chai Wah Wu, Jul 09 2023

Formula

G.f.: 1 / AGM(1, 1 - 8*x).
E.g.f.: exp(4*x)*BesselI(0, 2*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) = binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1). - Vladeta Jovovic, Sep 16 2003
D-finite with recurrence (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1). - Matthijs Coster, Apr 28 2004
E.g.f.: [Sum_{n>=0} binomial(2n,n)*x^n/n! ]^2. - Paul D. Hanna, Sep 04 2009
G.f.: Gaussian Hypergeometric function 2F1(1/2, 1/2; 1; 16*x-64*x^2). - Mark van Hoeij, Oct 24 2011
a(n) = 2^(-n) * A053175(n).
a(n) ~ 2^(3*n+1)/(Pi*n). - Vaclav Kotesovec, Oct 13 2012
0 = x*(x+4)*(x+8)*y'' + (3*x^2 + 24*x + 32)*y' + (x+4)*y, where y(x) = A(x/-32). - Gheorghe Coserea, Aug 26 2016
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)^2. - Seiichi Manyama, Apr 02 2017
a(n) = (1/Pi)^2*Integral_{0 <= x, y <= Pi} (4*cos(x)^2 + 4*cos(y)^2)^n dx dy. - Peter Bala, Feb 10 2022
a(n) = a(-1-n)*32^(n-1/2) and 0 = +a(n)*(+a(n+1)*(+32768*a(n+2) -23552*a(n+3) +3072*a(n+4)) +a(n+2)*(-8192*a(n+2) +8448*a(n+3) -1248*a(n+4)) +a(n+3)*(-512*a(n+3) +96*a(n+4))) +a(n+1)*(+a(n+1)*(-5120*a(n+2) +3840*a(n+3) -512*a(n+4)) +a(n+2)*(+1536*a(n+2) -1728*a(n+3) +264*a(n+4)) +a(n+3)*(+120*a(n+3) -23*a(n+4))) +a(n+2)*(+a(n+2)*(-32*a(n+2) +48*a(n+3) -8*a(n+4)) +a(n+3)*(-5*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Apr 04 2022
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=4*(-1 + 8*x)*T(x) + (1 - 24*x + 96*x^2)*T'(x) + x*(-1 + 4*x)*(-1 + 8*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 16*(1 - 8*x)^2 + 16*(1 - 8*x)^4);
g3 = 1 + 30*(1 - 8*x)^2 - 96*(1 - 8*x)^4 + 64*(1 - 8*x)^6;
which determine an elliptic surface with four singular fibers. (End)
G.f.: Sum_{n>=0} binomial(2*n,n)^2 * x^n * (1 - 4*x)^n. - Paul D. Hanna, Apr 18 2024
From Peter Bala, Jul 25 2024: (Start)
a(n) = 2*Sum_{k = 1..n} (k/n)*binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) for n >= 1.
a(n-1) = (1/2)*Sum_{k = 1..n} (k/n)^2*binomial(n, k)*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1. Cf. A002895. (End)

A006077 (n+1)^2*a(n+1) = (9n^2+9n+3)*a(n) - 27*n^2*a(n-1), with a(0) = 1 and a(1) = 3.

Original entry on oeis.org

1, 3, 9, 21, 9, -297, -2421, -12933, -52407, -145293, -35091, 2954097, 25228971, 142080669, 602217261, 1724917221, 283305033, -38852066421, -337425235479, -1938308236731, -8364863310291, -24286959061533, -3011589296289, 574023003011199, 5028616107443691
Offset: 0

Views

Author

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Conjecture: Let W(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0,...,n. If n == 1 (mod 3) then W(n) = 0. When n == 0 or 2 (mod 3), W(n)*(-1)^(floor((n+1)/3))/6^n is always a positive odd integer. - Zhi-Wei Sun, Aug 21 2013
Conjecture: Let p == 1 (mod 3) be a prime, and write 4*p = x^2 + 27*y^2 with x, y integers and x == 1 (mod 3). Then W(p-1) == (-1)^{(p+1)/2}*(x-p/x) (mod p^2), where W(n) is defined as the above. - Zhi-Wei Sun, Aug 23 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational functions 1/(1 - (x^2*y + y^2*z - z^2*x + 3*x*y*z)), 1/(1 - (x^3 + y^3 - z^3 + 3*x*y*z)), 1/(1 + x^3 + y^3 + z^3 - 3*x*y*z). - Gheorghe Coserea, Aug 04 2018

Examples

			G.f. = 1 + 3*x + 9*x^2 + 21*x^3 + 9*x^4 - 297*x^5 - 2421*x^6 - 12933*x^7 - ...
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

Related to diagonal of rational functions: A268545-A268555.
Cf. A091401.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    a := n -> 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Nov 01 2017
  • Mathematica
    Table[Sum[(-1)^k*3^(n - 3*k)*Binomial[n, 3*k]*Binomial[2*k, k]* Binomial[3*k, k], {k, 0, Floor[n/3]}], {n, 0, 50}] (* G. C. Greubel, Oct 24 2017 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/3, 2/3}, {1}, x^3 / (x - 1/3)^3 ] / (1 - 3 x), {x, 0, n}]; (* Michael Somos, Nov 01 2017 *)
  • PARI
    subst(eta(q)^3/eta(q^3), q, serreverse(eta(q^9)^3/eta(q)^3*q)) \\ (generating function) Helena Verrill (verrill(AT)math.lsu.edu), Apr 20 2009 [for (-1)^n*a(n)]
    
  • PARI
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
      return(a);
    };
    diag(1/(1 + x^3 + y^3 + z^3 - 3*x*y*z), 25)
    
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 3; a[2] = 9;
      for (n = 2, N-1, a[n+1] = ((9*n^2+9*n+3)*a[n] - 27*n^2*a[n-1])/(n+1)^2);
      concat(1,a);
    };
    seq(24)
    \\ test: y=subst(Ser(seq(202)), 'x, -'x/27); 0 == x*(x^2+9*x+27)*y'' + (3*x^2+18*x+27)*y' + (x+3)*y
    \\ Gheorghe Coserea, Nov 09 2017
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); (-1)^n * polcoeff( subst(eta(x + A)^3 / eta(x^3 + A), x, serreverse( x * eta(x^9 + A)^3 / eta(x + A)^3)), n))}; /* Michael Somos, Nov 01 2017 */

Formula

G.f.: hypergeom([1/3, 2/3], [1], x^3/(x-1/3)^3) / (1-3*x). - Mark van Hoeij, Oct 25 2011
a(n) = Sum_{k=0..floor(n/3)}(-1)^k*3^(n-3k)*C(n,3k)*C(2k,k)*C(3k,k). - Zhi-Wei Sun, Aug 21 2013
0 = x*(x^2+9*x+27)*y'' + (3*x^2 + 18*x + 27)*y' + (x + 3)*y, where y(x) = A(x/-27). - Gheorghe Coserea, Aug 26 2016
a(n) = 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1). - Peter Luschny, Nov 01 2017
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 9*x)*T(x) + (-1 + 9*x)^2*T'(x) + x*(1 - 9*x + 27*x^2)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(-8 + 9*(1 - 9*x)^3)*(1 - 9*x);
g3 = 8 - 36*(1 - 9*x)^3 + 27*(1 - 9*x)^6;
which determine an elliptic surface with four singular fibers. (End)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000

A125143 Almkvist-Zudilin numbers: Sum_{k=0..n} (-1)^(n-k) * ((3^(n-3*k) * (3*k)!) / (k!)^3) * binomial(n,3*k) * binomial(n+k,k).

Original entry on oeis.org

1, -3, 9, -3, -279, 2997, -19431, 65853, 292329, -7202523, 69363009, -407637387, 702049401, 17222388453, -261933431751, 2181064727997, -10299472204311, -15361051476987, 900537860383569, -10586290198314843, 74892552149042721, -235054958584593843
Offset: 0

Views

Author

R. K. Guy, Jan 11 2007

Keywords

Comments

Apart from signs, this is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational function 1/(1 - (x + y + z + w - 27*x*y*z*w)). - Gheorghe Coserea, Oct 14 2018
Named after the Swedish mathematician Gert Einar Torsten Almkvist (1934-2018) and the Russian mathematician Wadim Walentinowitsch Zudilin (b. 1970). - Amiram Eldar, Jun 23 2021

References

  • G. Almkvist and W. Zudilin, Differential equations, mirror maps and zeta values. In Mirror Symmetry V, N. Yui, S.-T. Yau, and J. D. Lewis (eds.), AMS/IP Studies in Advanced Mathematics 38 (2007), International Press and Amer. Math. Soc., pp. 481-515. Cited in Chan & Verrill.
  • Helena Verrill, in a talk at the annual meeting of the Amer. Math. Soc., New Orleans, LA, Jan 2007 on "Series for 1/pi".

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*((3^(n-3*k)*(3*k)!)/(k!)^3) *Binomial[n,3*k] *Binomial[n+k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 11 2013 *)
  • PARI
    a(n) = sum(k=0,n, (-1)^(n-k)*((3^(n-3*k)*(3*k)!)/(k!)^3)*binomial(n,3*k)*binomial(n+k,k) );

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * ((3^(n-3*k) * (3*k)!) / (k!)^3) * binomial(n,3*k) * binomial(n+k,k) . - Arkadiusz Wesolowski, Jul 13 2011
Recurrence: n^3*a(n) = -(2*n-1)*(7*n^2 - 7*n + 3)*a(n-1) - 81*(n-1)^3*a(n-2). - Vaclav Kotesovec, Sep 11 2013
Lim sup n->infinity |a(n)|^(1/n) = 9. - Vaclav Kotesovec, Sep 11 2013
G.f. y=A(x) satisfies: 0 = x^2*(81*x^2 + 14*x + 1)*y''' + 3*x*(162*x^2 + 21*x + 1)*y'' + (21*x + 1)*(27*x + 1)*y' + 3*(27*x + 1)*y. - Gheorghe Coserea, Oct 15 2018
G.f.: hypergeom([1/8, 5/8], [1], -256*x^3/((81*x^2 + 14*x + 1)*(-x + 1)^2))^2/((81*x^2 + 14*x + 1)^(1/4)*sqrt(-x + 1)). - Sergey Yurkevich, Aug 31 2020

Extensions

Edited and more terms added by Arkadiusz Wesolowski, Jul 13 2011

A229111 Expansion of the g.f. of A053723 in powers of the g.f. of A121591.

Original entry on oeis.org

1, -5, 35, -275, 2275, -19255, 163925, -1385725, 11483875, -91781375, 688658785, -4581861025, 22550427925, 8852899375, -2431720493125, 47471706909725, -699843878180125, 9141002535744625, -111232778205154375, 1288777160650004375, -14372445132730778975
Offset: 1

Views

Author

Michael Somos, Sep 30 2013

Keywords

Comments

In Verrill (1999) section 2.1, t = (eta(q^5) / eta(q))^6 the g.f. of A121591 and f = eta(q^5)^5 / eta(q) the g.f. of A053723.
Apart from signs, this is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017

Examples

			G.f. = x - 5*x^2 + 35*x^3 - 275*x^4 + 2275*x^5 - 19255*x^6 + 163925*x^7 + ...
		

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    a[n_] := a[n] = Switch[n, 1, 1, 2, -5, _, (1/(n-1)^3) ((1-2(n-1)) (11(n-2) (n-1)+5) a[n-1] - 125 (n-2)^3 a[n-2])];
    a /@ Range[21] (* Jean-François Alcover, Jan 13 2020 *)
  • PARI
    {a(n) = my(m = n-1); if( n<1, 0, if( n<3, [1, -5][n], -( (5*(m - 1))^3*a(n-2) + (2*m - 1)*(11*(m^2 - m) +5)*a(n-1) )/ m^3))};
    
  • PARI
    {a(n) = sum(k=0, n-1, (-1)^k*binomial(n-1, k)^3*binomial(5*k-(n-1), 3*(n-1)))} \\ Seiichi Manyama, Sep 02 2020

Formula

n^3 * a(n+1) = -(2*n - 1)*(11*n*(n - 1) + 5) * a(n) - 125 * (n - 1)^3 * a(n-1).
a(n*p^k) == (p^3 + Kronecker(p, 5)) * a(n*p^(k-1)) - Kronecker(p, 5) * p^3*a(n*p^(-2)) (mod p^k). [Verrill, 1999]
a(n) = Sum_{k=0..n-1} (-1)^k * binomial(n-1,k)^3 * binomial(5*k-(n-1),3*(n-1)). - Seiichi Manyama, Sep 02 2020

A290575 Apéry-like numbers Sum_{k=0..n} (C(n,k) * C(2*k,n))^2.

Original entry on oeis.org

1, 4, 40, 544, 8536, 145504, 2618176, 48943360, 941244376, 18502137184, 370091343040, 7508629231360, 154145664817600, 3196100636757760, 66834662101834240, 1407913577733228544, 29849617614785770456, 636440695668355742560, 13638210075999240396736, 293565508750164008207104, 6344596821114216520841536
Offset: 0

Views

Author

Hugo Pfoertner, Aug 06 2017

Keywords

Comments

Sequence epsilon in Almkvist, Straten, Zudilin article.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    Table[Sum[(Binomial[n, k]*Binomial[2*k, n])^2, {k, 0, n}], {n, 0, 25}] (* G. C. Greubel, Oct 23 2017 *)
    a[n_] := Binomial[2 n, n]^2 HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1, 1/2 - n, 1/2 - n}, 1];
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 10 2022 *)
  • PARI
    C=binomial; a(n) = sum (k=0, n, C(n,k)^2 * C(k+k,n)^2);

Formula

a(-1)=0, a(0)=1, a(n+1) = ((2*n+1)*(12*n^2+12*n+4)*a(n)-16*n^3*a(n-1))/(n+1)^3.
a(n) = Sum_{k=ceiling(n/2)..n} binomial(n,k)^2*binomial(2*k,n)^2. [Gorodetsky] - Michel Marcus, Feb 25 2021
a(n) ~ 2^(2*n - 3/4) * (1 + sqrt(2))^(2*n+1) / (Pi*n)^(3/2). - Vaclav Kotesovec, Jul 10 2021
From Peter Bala, Apr 10 2022: (Start)
The g.f. is the diagonal of the rational function 1/(1 - (x + y + z + t) + 2*(x*y*z + x*y*t + x*z*t + y*z*t) + 4*x*y*z*t) (Straub and Zudilin)
The g.f. appears to be the diagonal of the rational function 1/(1 - x - y + z - t - 2*(x*z + y*z + z*t) + 4*(x*y*t + x*z*t) + 8*x*y*z*t).
If true, then a(n) = [(x*y*z)^n] ( (x + y + z + 1)*(x + y + z - 1)*(x + y - z - 1)*(x - y - z + 1) )^n . (End)
a(n) = binomial(2*n, n)^2 * hypergeom([1/2-n/2, 1/2-n/2, -n/2, -n/2], [1, 1/2-n, 1/2-n], 1). - Peter Luschny, Apr 10 2022
G.f.: hypergeom([1/8, 3/8],[1], 256*x^2 / (1 - 4*x)^4)^2 / (1 - 4*x). - Mark van Hoeij, Nov 12 2022
a(n) = [(w*x*y*z)^n] ((w+z)*(x+z)*(y+z)*(w+x+y+z))^n = Sum_{0 <= j <= i <= n} binomial(n,i)^2*binomial(i,j)^2*binomial(n+j,i). - Jeremy Tan, Mar 28 2024

A290576 Apéry-like numbers Sum_{k=0..n} Sum_{l=0..n} (C(n,k)^2*C(n,l)*C(k,l)*C(k+l,n)).

Original entry on oeis.org

1, 3, 27, 309, 4059, 57753, 866349, 13492251, 216077787, 3536145057, 58875891777, 994150929951, 16984143140589, 293036113226223, 5098773125244483, 89368239352074309, 1576424378494272987, 27964450505226314673, 498550055166916502121
Offset: 0

Views

Author

Hugo Pfoertner, Aug 06 2017

Keywords

Comments

Sequence zeta (formula 4.12) in Almkvist, Straten, Zudilin article.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    f:= gfun:-rectoproc({a(0)=1, a(1)=3, a(n+1) = ( (2*n+1)*(9*n^2+9*n+3)*a(n) + 27*n^3*a(n-1) ) / (n+1)^3}, a(n), remember):
    map(f, [$0..30]); # Robert Israel, Aug 07 2017
  • Mathematica
    Table[Sum[Sum[(Binomial[n, k]^2*Binomial[n, j] Binomial[k, j] Binomial[k + j, n]), {j, 0, n} ], {k, 0, n}], {n, 0, 18}] (* Michael De Vlieger, Aug 07 2017 *)
  • PARI
    C=binomial;
    a(n) = sum(k=0,n, sum(l=0,n, C(n,k)^2 * C(n,l) * C(k,l) * C(k+l,n) ));

Formula

a(0) = 1, a(1) = 3,
a(n+1) = ( (2*n+1)*(9*n^2+9*n+3)*a(n) + 27*n^3*a(n-1) ) / (n+1)^3.
a(n) ~ 3^(3*n/2 + 1) * (1+sqrt(3))^(2*n+1) / (2^(n + 5/2) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Jul 10 2021
G.f.: hypergeom([1/12,5/12],[1],(12*x/(1-6*x-27*x^2))^3)^2/(1-6*x-27*x^2)^(1/2). - Mark van Hoeij, Nov 11 2022

A143003 a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+5)*a(n) - n^6*a(n-1).

Original entry on oeis.org

0, 1, 21, 1091, 114520, 21298264, 6410456640, 2923097201856, 1920450126458880, 1747596822651334656, 2133806329230225408000, 3405545462439659704320000, 6950705677729940374290432000, 17807686090745585163974737920000
Offset: 0

Views

Author

Peter Bala, Jul 19 2008

Keywords

Comments

This is the case m = 1 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+2*m^2+2*m+1)*a(n) - n^6*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series Sum_{k>=1} 1/k^3 for Apery's constant zeta(3). For other cases see A066989 (m=0), A143004 (m=2), A143005 (m=3) and A143006 (m=4).
The solution to the general recurrence may be expressed as a sum: a(n) = n!^3*p_m(n)*Sum_{k = 1..n} 1/(k^3*p_m(k-1)*p_m(k)), where p_m(x) = Sum_{k = 0..n} C(2*k,k)^2*C(n+k,2*k)*C(x+k,2*k) is a polynomial in x of degree 2*m.
The first few are p_0(x) = 1, p_1(x) = 2*x^2 + 2*x + 1, p_2(x) = (3*x^4 + 6*x^3 + 9*x^2 + 6*x + 2)/2 and p_3(x) = (10*x^6 + 30*x^5 + 85*x^4 + 120*x^3 + 121*x^2 + 66*x + 18)/18. For fixed n, the sequence [p_n(k)]k>=0 is the crystal ball sequence for the product lattice A_n x A_n. See A143007 for the table of values [p_n(k)] n,k >= 0. Observe that [p_n(n)] n >= 0 is the sequence of Apery numbers A005259.
The reciprocity law p_m(n) = p_n(m) holds for nonnegative integers m and n. In particular we have p_m(1) = 2*m^2 + 2*m + 1 and p_m(2) = (3*m^4 + 6*m^3 + 9*m^2 + 6*m + 2)/2.
The polynomial p_m(x) is the unique polynomial solution of the difference equation (x+1)^3*f(x+1) + x^3*f(x-1) = (2*x+1)*(x^2+x+2*m^2+2*m+1)*f(x), normalized so that f(0) = 1. The reciprocity law now yields the Apery-like recursion m^3*p_m(x) + (m-1)^3*p_(m-2)(x) = (2*m-1)*(m^2-m+1+2*x^2+2*x)*p_(m-1)(x).
The polynomial functions p_m(x) have their zeros on the vertical line Re x = -1/2 in the complex plane; that is, the polynomials p_m(x-1), m = 1,2,3,..., satisfy a Riemann hypothesis (adapt the proof of the lemma on p. 4 of [BUMP et al.]).
The general recurrence in the first paragraph above has a second solution b(n) = n!^3*p_m(n) with initial conditions b(0) = 1, b(1) = 2*m^2+2*m+1. Hence the behavior of a(n) for large n is given by lim_{n -> infinity} a(n)/b(n) = Sum_{k>=1} 1/(k^3*p_m(k-1)*p_m(k)) = 1/((2*m^2+2*m+1) - 1^6/(3*(2*m^2+2*m+3) - 2^6/(5*(2*m^2+2*m+7) - 3^6/(7*(2*m^2+2*m+13) - ...)))) = Sum_{k>=1} 1/(m+k)^3. The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Entry 32(iii)].
For the corresponding results for the constant zeta(2) see A142995. For corresponding results for the constant log(2) see A142979 and A142992.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    p := n -> 2*n^2+2*n+1: a := n -> n!^3*p(n)*sum (1/(k^3*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..14)
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n+1]==(2n+1)(n^2+n+5)a[n]- n^6 a[n-1]}, a[n],{n,15}] (* Harvey P. Dale, Jun 20 2011 *)

Formula

a(n) = n!^3*p(n)*Sum_{k = 1..n} 1/(k^3*p(k-1)*p(k)), where p(n) = 2*n^2 + 2*n + 1 = A001844(n).
Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+5)*a(n) - n^6*a(n-1).
The sequence b(n):= n!^3*p(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 5. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - (n-1)^6/((2*n-1)*(n^2-n+5)))))), for n >= 2. The behavior of a(n) for large n is given by lim_{n -> infinity} a(n)/b(n) = Sum_{k>=1} 1/(k^3*(4*k^4 + 1)) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - n^6/((2*n+1)*(n^2+n+5) - ...))))) = zeta(3) - 1, where the final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Entry 32(iii) at x = 1].

A183204 Central terms of triangle A181544.

Original entry on oeis.org

1, 4, 48, 760, 13840, 273504, 5703096, 123519792, 2751843600, 62659854400, 1451780950048, 34116354472512, 811208174862904, 19481055861877120, 471822589361293680, 11511531876280913760, 282665135367572129040
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2010

Keywords

Comments

The g.f. for row n of triangle A181544 is (1-x)^(3n+1)*Sum_{k>=0}C(n+k-1,k)^3*x^k.
This sequence is s_7 in Cooper's paper. - Jason Kimberley, Nov 06 2012
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y*z + x*y + x*z + y + z)). - Gheorghe Coserea, Jul 14 2016
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017

Examples

			Triangle A181544 begins:
(1);
1, (4), 1;
1, 20, (48), 20, 1;
1, 54, 405, (760), 405, 54, 1;
1, 112, 1828, 8464, (13840), 8464, 1828, 112, 1; ...
		

Crossrefs

Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    P:=PolynomialRing(Integers()); C:=Binomial;
    A183204:=func; // or directly:
    A183204:=func;
    [A183204(n):n in[0..16]]; // Jason Kimberley, Oct 29 2012
  • Mathematica
    Table[Sum[Binomial[n,j]^2 * Binomial[2*j,n] * Binomial[j+n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 05 2015 *)
  • PARI
    {a(n)=polcoeff((1-x)^(3*n+1)*sum(j=0, 2*n, binomial(n+j, j)^3*x^j), n)}
    

Formula

a(n) = [x^n] (1-x)^(3n+1) * Sum_{k>=0} C(n+k-1,k)^3*x^k.
a(n) = Sum_{j = 0..n} C(n,j)^2 * C(2*j,n) * C(j+n,j). [Formula of Wadim Zudilin provided by Jason Kimberley, Nov 06 2012]
1/Pi = sqrt(7) Sum_{n>=0} (-1)^n a(n) (11895n + 1286)/22^(3n+3). [Cooper, equation (41)] - Jason Kimberley, Nov 06 2012
G.f.: sqrt((1-13*x+(1-26*x-27*x^2)^(1/2))/(1-21*x+8*x^2+(1-8*x)*(1-26*x-27*x^2)^(1/2)))*hypergeom([1/12,5/12],[1],13824*x^7/(1-21*x+8*x^2+(1-8*x)*(1-26*x-27*x^2)^(1/2))^3)^2. - Mark van Hoeij, May 07 2013
a(n) ~ 3^(3*n+3/2) / (4 * (Pi*n)^(3/2)). - Vaclav Kotesovec, Apr 05 2015
G.f. A(x) satisfies 1/(1+4*x)^2 * A( x/(1+4*x)^3 ) = 1/(1+2*x)^2 * A( x^2/(1+2*x)^3 ) [see Cooper, Guillera, Straub, Zudilin]. - Joerg Arndt, Apr 08 2016
a(n) = (-1)^n*binomial(3n+1,n)* 4F3({-n,n+1,n+1,n+1};{1,1,2(n+1)}; 1). - M. Lawrence Glasser, May 15 2016
Conjecture D-finite with recurrence: n^3*a(n) - (2*n-1)*(13*n^2-13*n+4)*a(n-1) - 3*(n-1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, May 15 2016
0 = (-x^2+26*x^3+27*x^4)*y''' + (-3*x+117*x^2+162*x^3)*y'' + (-1+86*x+186*x^2)*y' + (4+24*x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
From Jeremy Tan, Mar 14 2024: (Start)
The conjectured D-finite recurrence can be proved by Zeilberger's algorithm.
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,n) * binomial(2*n-k,n) = [(w*x*y*z)^n] ((w+y)*(x+z)*(y+z)*(w+x+y+z))^n. (End)
a(n) = Sum_{0 <= j, k <= n} binomial(n, k)^2 * binomial(n, j)^2 * binomial(k+j, n) = Sum_{k = 0..n} binomial(n, k)^2 * A108625(n, k). - Peter Bala, Jul 08 2024
From Peter Bala, Sep 18 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n+k, k)^3*binomial(3*n+1, n-k). Cf A245086.
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*A143007(n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). (End)

A036917 G.f.: (4/Pi^2)*EllipticK(4*x^(1/2))^2.

Original entry on oeis.org

1, 8, 88, 1088, 14296, 195008, 2728384, 38879744, 561787864, 8206324928, 120929313088, 1794924383744, 26802975999424, 402298219288064, 6064992788397568, 91786654611673088, 1393772628452578264, 21227503080738294464, 324160111169327247424
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 8*x + 88*x^2 +  1088*x^3 + 14296*x^5 + 195008*x^5 + ... - _Michael Somos_, May 29 2023
		

References

  • M. Petkovsek et al., "A=B", Peters, p. ix of second printing.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Haskell
    a036917 n = sum $ map
       (\k -> (a007318 (2*n-2*k) (n-k))^2 * (a007318 (2*k) k)^2) [0..n]
    -- Reinhard Zumkeller, May 24 2012
    
  • Mathematica
    a[n_] := (16 (n - 1/2)(2*n^2 - 2*n + 1)a[n - 1] - 256(n - 1)^3 a[n - 2])/n^3; a[0] = 1; a[1] = 8; Array[a, 19, 0] (* Or *)
    f[n_] := Sum[(Binomial[2 (n - k), n - k] Binomial[2 k, k])^2, {k, 0, n}]; Array[f, 19, 0] (* Or *)
    lmt = 20; Take[ 4^Range[0, 2 lmt]*CoefficientList[ Series[(4/Pi^2) EllipticK[4 x^(1/2)]^2, {x, 0, lmt}], x^(1/2)], lmt] (* Robert G. Wilson v *)
    a[n_] := HypergeometricPFQ[{1/2, 1/2, -n, -n}, {1, 1/2-n, 1/2-n}, 1] * 4^n * (2n-1)!!^2 / n!^2 (* Vladimir Reshetnikov, Mar 08 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[3, 0, EllipticNomeQ[16*x]]^4, {x, 0, n}]; (* Michael Somos, May 30 2023 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n, (binomial(2*n-2*k,n-k) *binomial(2*k,k))^2), ", ")) \\ G. C. Greubel, Oct 24 2017
    
  • PARI
    a(n) = if(n<0, 0, polcoeff(agm(1, sqrt(1 - 16*x + x*O(x^n)))^-2, n)); /* Michael Somos, May 29 2023 */

Formula

a(n) = (16*(n-1/2)*(2*n^2-2*n+1)*a(n-1)-256*(n-1)^3*a(n-2))/n^3.
a(n) = Sum_{k=0..n} (C(2 * (n-k), n-k) * C(2 * k, k))^2. [corrected by Tito Piezas III, Oct 19 2010]
a(n) = hypergeom([1/2, 1/2, -n, -n], [1, 1/2-n, 1/2-n], 1) * 4^n * (2n-1)!!^2 / n!^2. - Vladimir Reshetnikov, Mar 08 2014
a(n) ~ 2^(4*n+1) * log(n) / (n*Pi^2) * (1 + (4*log(2) + gamma)/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Nov 28 2015
G.f. y=A(x) satisfies: 0 = x^2*(16*x - 1)^2*y''' + 3*x*(16*x - 1)*(32*x - 1)*y'' + (1792*x^2 - 112*x + 1)*y' + 8*(32*x - 1)*y. - Gheorghe Coserea, Jul 03 2018
G.f.: 1 / AGM(1, sqrt(1 - 16*x))^2. - Vaclav Kotesovec, Oct 01 2019
It appears that a(n) is equal to the coefficient of (x*y*z*t)^n in the expansion of (1+x+y+z-t)^n * (1+x+y-z+t)^n * (1+x-y+z+t)^n * (1-x+y+z+t)^n. Cf. A000172. - Peter Bala, Sep 21 2021
G.f. y = A(x) satisfies 0 = x*(1 - 16*x)*(2*y''*y - y'*y') + 2*(1 - 32*x)*y*y' - 16*y*y. - Michael Somos, May 29 2023
Expansion of theta_3(0, q)^4 in powers of m/16 where the modulus m = k^2. - Michael Somos, May 30 2023
From Paul D. Hanna, Mar 25 2024: (Start)
G.f. ( Sum_{n>=0} binomial(2*n,n)^2 * x^n )^2.
G.f. Sum_{n>=0} binomial(2*n,n)^3 * x^n * (1 - 16*x)^n. (End)

Extensions

Replaced complicated definition via a formula with simple generating function provided by Vladeta Jovovic, Dec 01 2003. Thanks to Paul D. Hanna for suggesting this. - N. J. A. Sloane, Mar 25 2024

A143583 Apéry-like numbers: a(n) = (1/C(2n,n))*Sum_{k=0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k).

Original entry on oeis.org

1, 12, 164, 2352, 34596, 516912, 7806224, 118803648, 1818757924, 27972399792, 431824158864, 6686855325888, 103814819552016, 1615296581684928, 25180747436810304, 393189646497706752, 6148451986328464164, 96269310864931432368, 1509065592479205772304
Offset: 0

Views

Author

Peter Bala, Aug 25 2008

Keywords

Comments

These numbers bear some analogy to the Apéry numbers A005258. They appear in the evaluation of the spectral zeta function of the non-commutative harmonic oscillator zeta_Q(s) at s = 2 and satisfy a recurrence relation similar to the one satisfied by the Apéry numbers.

Examples

			G.f. = 1 + 12*x + 164*x^2 + 2352*x^3 + 34596*x^4 + 516912*x^5 + ...
		

Crossrefs

Cf. A005258.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    a := n -> 1/binomial(2*n, n)*add(binomial(2*k, k)*binomial(4*k, 2*k)*binomial(2*n-2*k, n-k)*binomial(4*n-4*k, 2*n-2*k), k = 0..n): seq(a(n), n = 0..25);
    series( 2*EllipticK(4*x^(1/2))/(Pi*sqrt(1-16*x)), x=0, 20); # Mark van Hoeij, Apr 06 2013
    A143583 := n -> 16^n*hypergeom([1/2, 1/2, -n], [1, 1], 1):
    seq(simplify(A143583(n)), n = 0..18); # Peter Luschny, Nov 12 2022
  • Mathematica
    Table[1/Binomial[2*n,n]*Sum[Binomial[2*k,k]*Binomial[4*k,2*k]*Binomial[2*n-2*k,n-k]*Binomial[4*n-4*k,2*n-2*k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 11 2013 *)

Formula

a(n) = (1/C(2n,n))*sum {k = 0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k).
Recurrence relation:
a(0) = 1, a(1) = 12, n^2*a(n) = 4*(8*n^2-8*n+3)*a(n-1) - 256*(n-1)^2*a(n-2).
Congruences:
For odd prime p, a(m*p^r) = a(m*p^(r-1)) (mod p^r) for any m,r in N.
a(n) ~ 16^n/(Pi*sqrt(Pi*n)) * (log(n) + gamma + 6*log(2)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 11 2013
a(n) = sum {k = 0..n} 4^(n-k) C(2k,k)^2*C(2n-2k,n-k). - Tito Piezas III, Dec 12 2014
a(n) = hypergeom([1/2,1/2,n+1],[1,n+3/2],1)*2^(5*n+1)*n!/((2*n+1)!!*Pi) - G. A. Edgar, Dec 10 2016
a(n) = binomial(4*n,2*n)*hypergeom([1/4,3/4,-n,-n], [1,1/4-n,3/4-n], 1). - Peter Luschny, May 14 2020
From Peter Luschny, Nov 12 2022: (Start)
a(n) = 16^n*Sum_{k=0..n} (-1)^k*binomial(-1/2, k)^2*binomial(n, k).
a(n) = 16^n*hypergeom([1/2, 1/2, -n], [1, 1], 1). (End)
Previous Showing 11-20 of 46 results. Next