A136302
Transform of A000027 by the T_{1,1} transformation (see link).
Original entry on oeis.org
2, 6, 15, 35, 81, 188, 437, 1016, 2362, 5491, 12765, 29675, 68986, 160373, 372822, 866706, 2014847, 4683951, 10888865, 25313540, 58846841, 136802308, 318026782, 739322571, 1718716457, 3995531011, 9288482690, 21593102505, 50197873146, 116695897118, 271285047567
Offset: 1
-
I:=[2,6,15]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 12 2021
-
a:= n-> (<<6|2|1>>. <<3|1|0>, <-2|0|1>, <1|0|0>>^n)[1, 3]:
seq(a(n), n=1..40); # Alois P. Heinz, Aug 14 2008
-
LinearRecurrence[{3,-2,1}, {2,6,15}, 41] (* G. C. Greubel, Apr 12 2021 *)
-
def A136302_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(2+x^2)/(1-3*x+2*x^2-x^3) ).list()
a=A136302_list(41); a[1:] # G. C. Greubel, Apr 12 2021
A136303
Expansion of g.f. (1 +x^2)/((1-x)^2*(1 -3*x +2*x^2 -x^3)).
Original entry on oeis.org
1, 5, 17, 48, 123, 300, 714, 1679, 3925, 9149, 21296, 49537, 115192, 267824, 622653, 1447533, 3365149, 7823068, 18186475, 42278476, 98285586, 228486323, 531166317, 1234811937, 2870589548, 6673311137, 15513566304, 36064666240, 83840177305
Offset: 0
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^2)/((1-x)^2*(1-3*x+2*x^2-x^3)) )); // G. C. Greubel, Apr 19 2021
-
A136303:= n-> -2*(n+2) + add( (5*binomial(n+k+2, 3*k+2) - 4*binomial(n +k+1, 3*k+2) + 2*binomial(n+k, 3*k+2)), k=0..n/2 );
seq(A136303(n), n=0..40); # G. C. Greubel, Apr 19 2021
-
LinearRecurrence[{5,-9,8,-4,1},{1,5,17,48,123},40] (* Harvey P. Dale, Apr 01 2018 *)
-
def A136303_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x^2)/((1-x)^2*(1-3*x+2*x^2-x^3)) ).list()
A136303_list(40) # G. C. Greubel, Apr 19 2021
A137229
Expansion of g.f. x/((1-x)*(1-3*x+2*x^2-x^3)).
Original entry on oeis.org
1, 4, 11, 27, 64, 150, 350, 815, 1896, 4409, 10251, 23832, 55404, 128800, 299425, 696080, 1618191, 3761839, 8745216, 20330162, 47261894, 109870575, 255418100, 593775045, 1380359511, 3208946544, 7459895656, 17342153392, 40315615409, 93722435100, 217878227875
Offset: 1
-
I:=[1,4,11,27]; [n le 4 select I[n] else 4*Self(n-1) -5*Self(n-2) +3*Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Apr 17 2021
-
a:= n-> (<<3|1|0|0>, <-2|0|1|0>, <1|0|0|0>, <1|0|0|1>>^n)[4, 1]:
seq(a(n), n=1..50); # Alois P. Heinz, Jul 24 2008
-
LinearRecurrence[{4,-5,3,-1},{1,4,11,27},40] (* Harvey P. Dale, Nov 10 2014 *)
-
def A137229_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x/((1-x)*(1-3*x+2*x^2-x^3)) ).list()
a=A137229_list(41); a[1:] # G. C. Greubel, Apr 17 2021
A368475
Expansion of o.g.f. (1-x)^5/((1-x)^5 - x^4).
Original entry on oeis.org
1, 0, 0, 0, 1, 5, 15, 35, 71, 136, 265, 550, 1211, 2732, 6126, 13485, 29191, 62648, 134408, 289656, 627401, 1363124, 2963186, 6434484, 13951852, 30221185, 65442625, 141745045, 307137901, 665732417, 1443184210, 3128438335, 6780867186, 14696002913, 31848721632
Offset: 0
Since there are C(4,4) = 1 type of 4, C(5,4) = 5 types of 5, C(6,4) = 15 types of 6, C(7,4) = 35 types of 7, C(8,4) = 70 types of 8, and (12,4) = 495 types of 12, we can write 12 in the following ways:
12: 495 ways;
8+4: 70 ways;
7+5: 175 ways;
6+6: 225 ways;
5+7: 175 ways;
4+8: 70 ways;
4+4+4: 1 way, for a total of 1211 ways.
-
CoefficientList[Series[(1 - x)^5/((1 - x)^5 - x^4), {x, 0, 50}], x] (* Wesley Ivan Hurt, Dec 26 2023 *)
-
Vec((1-x)^5/((1-x)^5 - x^4) + O(x^40)) \\ Michel Marcus, Dec 27 2023
A127893
Riordan array (1/(1-x)^3, x/(1-x)^3).
Original entry on oeis.org
1, 3, 1, 6, 6, 1, 10, 21, 9, 1, 15, 56, 45, 12, 1, 21, 126, 165, 78, 15, 1, 28, 252, 495, 364, 120, 18, 1, 36, 462, 1287, 1365, 680, 171, 21, 1, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
Offset: 0
Triangle begins
1;
3, 1;
6, 6, 1;
10, 21, 9, 1;
15, 56, 45, 12, 1;
21, 126, 165, 78, 15, 1;
28, 252, 495, 364, 120, 18, 1;
36, 462, 1287, 1365, 680, 171, 21, 1;
45, 792, 3003, 4368, 3060, 1140, 231, 24, 1;
55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1;
66, 2002, 12870, 31824, 38760, 26334, 10626, 2600, 378, 30, 1;
...
From _Peter Bala_, Jul 22 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 3 1 ||0 1 ||0 1 | | 3 1 |
| 6 3 1 ||0 3 1 ||0 0 1 |... = | 6 6 1 |
|10 6 3 1 ||0 6 3 1 ||0 0 3 1 | |10 21 9 1|
|15 10 6 3 1||0 10 6 3 1||0 0 6 3 1| |... |
|... ||... ||... | |... |
(End)
-
Flat(List([0..10],n->List([0..n],k->Binomial(n+2*k+2,n-k)))); # Muniru A Asiru, Apr 30 2018
-
[Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
-
seq(seq(binomial(n+2*k+2,n-k),k=0..n),n=0..10); # Robert Israel, Apr 28 2015
-
Flatten@ Table[Binomial[n+2k-1, n-k], {n, 10}, {k, n}] (* Michael De Vlieger, Apr 27 2015 *)
-
for(n=0,10, for(k=0,n, print1(binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
-
flatten([[binomial(n+2*k+2,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021
A137234
Expansion of g.f. 1/((1-x)^2*(1 - 3*x + 2*x^2 - x^3)).
Original entry on oeis.org
1, 5, 16, 43, 107, 257, 607, 1422, 3318, 7727, 17978, 41810, 97214, 226014, 525439, 1221519, 2839710, 6601549, 15346765, 35676927, 82938821, 192809396, 448227496, 1042002541, 2422362052, 5631308596, 13091204252, 30433357644, 70748973053
Offset: 0
-
I:=[1,5,16,43,107]; [n le 5 select I[n] else 5*Self(n-1) -9*Self(n-2) +8*Self(n-3) -4*Self(n-4) +Self(n-5): n in [1..41]]; // G. C. Greubel, Apr 19 2021
-
LinearRecurrence[{5,-9,8,-4,1}, {1,5,16,43,107}, 41] (* G. C. Greubel, Apr 19 2021 *)
CoefficientList[Series[1/((1-x)^2(1-3x+2x^2-x^3)),{x,0,30}],x] (* Harvey P. Dale, Jun 07 2021 *)
-
@CachedFunction
def A095263(n): return sum(binomial(n+j+2, 3*j+2) for j in (0..n//2))
def A137234(n): return -(n+3) + sum( (-1)^j*(4-j)*A095263(n-j) for j in (0..2))
[A137234(n) for n in (0..40)] # G. C. Greubel, Apr 19 2021
A137249
Expansion of g.f. z*(2-2*z+z^2+z^3)/((1+z)*(1-3*z+2*z^2-z^3)).
Original entry on oeis.org
2, 2, 7, 15, 37, 84, 197, 456, 1062, 2467, 5737, 13335, 31002, 72069, 167542, 389486, 905447, 2104907, 4893317, 11375580, 26445017, 61477204, 142917162, 332242091, 772369157, 1795540447, 4174125122, 9703663625, 22558281082
Offset: 1
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (2-2*x+x^2+x^3)/((1+x)*(1-3*x+2*x^2-x^3)) )); // G. C. Greubel, Apr 11 2021
-
m:= 40;
S:= series( x*(2-2*x+x^2+x^3)/((1+x)*(1-3*x+2*x^2-x^3)), x, m+1);
seq(coeff(S, x, j), j = 1..m); # G. C. Greubel, Apr 11 2021
-
LinearRecurrence[{2,1,-1,1},{2,2,7,15},30] (* Harvey P. Dale, Feb 02 2012 *)
-
def A132749_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (2-2*x+x^2+x^3)/((1+x)*(1-3*x+2*x^2-x^3)) ).list()
A132749_list(40) # G. C. Greubel, Apr 11 2021
A369794
Expansion of 1/(1 - x^5/(1-x)^6).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 253, 474, 870, 1651, 3367, 7372, 16762, 38183, 85290, 185573, 394555, 826752, 1724816, 3613968, 7642004, 16313856, 35052905, 75487110, 162349105, 348018300, 743376838, 1583718457, 3370144462, 7173308802, 15285181447
Offset: 0
A096261
Number of n-tuples of 0,1,2,3,4,5,6,7,8,9 without consecutive digits.
Original entry on oeis.org
1, 10, 91, 828, 7534, 68552, 623756, 5675568, 51642104, 469892512, 4275561136, 38903414208, 353982925023, 3220897542254, 29307009588171, 266665052127080, 2426390512890816, 22077774624328776, 200886102122914612
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-9,8,-7,6,-5,4,-3,2,-1).
-
R:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( 1/(1-10*x+9*x^2-8*x^3+7*x^4-6*x^5+5*x^6-4*x^7+3*x^8-2*x^9+x^10) )); // G. C. Greubel, Apr 17 2021
-
A096261:=proc(n,b::nonnegint) local s,i; option remember; if n<0 then RETURN(0) fi; if n=0 then RETURN(1) fi; s:=0; for i from 1 to b do s:=s+(-1)^(i-1)*(b-i+1)*A096261(n-i,b); od; end; seq(A096261(i,10),i=0..20);
-
a[n_]:= a[n]= If[n<0, 0, If[n==0, 1, 10a[n-1] -9a[n-2] +8a[n-3] -7a[n-4] +6a[n-5] -5a[n-6] +4a[n-7] -3a[n-8] +2a[n-9] -a[n-10] ]]; Table[ a[n], {n,0,25}] (* Robert G. Wilson v, Aug 02 2004 *)
LinearRecurrence[{10,-9,8,-7,6,-5,4,-3,2,-1}, {1,10,91,828,7534,68552,623756, 5675568,51642104,469892512}, 30] (* Harvey P. Dale, Dec 16 2013 *)
-
def A096261_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-10*x+9*x^2-8*x^3+7*x^4-6*x^5+5*x^6-4*x^7+3*x^8-2*x^9+x^10) ).list()
A096261_list(30) # G. C. Greubel, Apr 17 2021
A127895
Riordan array (1/(1+x)^3, x/(1+x)^3).
Original entry on oeis.org
1, -3, 1, 6, -6, 1, -10, 21, -9, 1, 15, -56, 45, -12, 1, -21, 126, -165, 78, -15, 1, 28, -252, 495, -364, 120, -18, 1, -36, 462, -1287, 1365, -680, 171, -21, 1, 45, -792, 3003, -4368, 3060, -1140, 231, -24, 1, -55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1
Offset: 0
Triangle begins
1;
-3, 1;
6, -6, 1;
-10, 21, -9, 1;
15, -56, 45, -12, 1;
-21, 126, -165, 78, -15, 1;
28, -252, 495, -364, 120, -18, 1;
-36, 462, -1287, 1365, -680, 171, -21, 1;
45, -792, 3003, -4368, 3060, -1140, 231, -24, 1;
-55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1;
66, -2002, 12870, -31824, 38760, -26334, 10626, -2600, 378, -30, 1;
Alternating sign version of
A127893.
-
[(-1)^(n-k)*Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
-
# Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
InvPMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
-
Table[(-1)^(n-k)*Binomial[n+2*k+2, n-k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
-
for(n=0, 10, for(k=0,n, print1((-1)^(n-k)*binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
-
flatten([[(-1)^(n-k)*binomial(n+2*k+2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021
Comments