cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A340103 a(n) = [x^n] Product_{k>=1} (1 + n^(k-1)*x^k).

Original entry on oeis.org

1, 1, 2, 12, 80, 875, 10584, 170471, 2949120, 63772920, 1441000000, 38818444632, 1089573617664, 35185728919614, 1175820172477440, 44425722744140625, 1722925924631969792, 74364737115532234518, 3291298649632850485248, 159785357022861166517580, 7932051456000000000000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + n^(k - 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Unprotect[Power]; 0^0 = 1; Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] n^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 20}]
    Join[{1}, Table[SeriesCoefficient[n*QPochhammer[-1/n, n*x]/(n+1), {x, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 09 2021 *)

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * n^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ c * n^(n-1), where c = BesselI(1,2) = A096789 = 1.590636854637329... - Vaclav Kotesovec, May 09 2021

A048764 Largest factorial <= n.

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

References

  • J. Castillo, Other Smarandache Type Functions: Inferior/Superior Smarandache f-part of x, Smarandache Notions Journal, Vol. 10, No. 1-2-3 (1999), 202-204.

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[(k + 1)! <= n, k++]; k!, {n, 80}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    a(n)=my(t=1,k=1);while(t<=n,t*=k++);t/k \\ Charles R Greathouse IV, Sep 19 2012
    
  • Python
    from sympy import factorial as f
    def a(n):
        k=1
        while f(k + 1)<=n: k+=1
        return f(k)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 21 2017, after Mathematica code

Formula

n log log n / log n << a(n) <= n. - Charles R Greathouse IV, Sep 19 2012
From Amiram Eldar, Aug 02 2022: (Start)
Sum_{n>=1} 1/a(n)^m = Sum_{k>=1} k/k!^m (Li Jie, 2004).
In particular:
Sum_{n>=1} 1/a(n)^2 = e (A001113).
Sum_{n>=1} 1/a(n)^3 = BesselI(1,2) (A096789). (End)
a(n) = A000142(A084558(n)). - Ridouane Oudra, Aug 22 2025

A086880 a(n) = floor( sum(k=0, infinity, k^n/(k!)^2 ) ); related to generalized Bell numbers.

Original entry on oeis.org

2, 1, 2, 3, 7, 17, 45, 128, 391, 1287, 4524, 16889, 66657, 276982, 1207598, 5507362, 26203307, 129757596, 667358910, 3558097578, 19632277761, 111930731957, 658482495614, 3992062349412, 24911272290567, 159833355923362
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2003

Keywords

Comments

Define B(n) = sum(k=0, infinity, k^n/(k!)^2), then there exists a complex linear relation: B(3) = B(2) + B(1); B(4) = 2*B(3); B(5) = 2*B(4) + B(2); B(6) = 5*B(4) + 3*B(2); B(7) = 7*B(5) + B(3); B(12) = B(11) + 11*B(10); ...

Examples

			a(5) = floor(1^5/(1!)^2 + 2^5/(2!)^2 + 3^5/(3!)^2 + 4^5/(4!)^2 +...)
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sum[k^n/(k!)^2,{k,0,Infinity}]],{n,0,20}] (* Vaclav Kotesovec, Jul 31 2014 *)
    Flatten[{2, 1, Table[Floor[HypergeometricPFQ[ConstantArray[2, n-2], ConstantArray[1, n-1], 1]], {n,2,20}]}] (* Vaclav Kotesovec, May 23 2015 *)

Formula

sum(k>=0, k^n/(k!)^2) = A000994(n)*BesselI(0, 2) + A000995(n)*BesselI(1, 2), using Bessel function values BesselI(0, 2)=2.2795853023..., BesselI(1, 2) = 1.5906368546... (A096789) and where A000994 and A000995 shift 2 places left under binomial transform: A000994={1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, ...} A000995={0, 1, 0, 1, 2, 4, 10, 29, 90, 295, 1030, 3838, ...}.

A103505 Denominator in expansion of (1-x)*log(1-x).

Original entry on oeis.org

1, 1, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450
Offset: 0

Views

Author

Paul Barry, Feb 09 2005

Keywords

Comments

Apart from initial terms, same as A002378.
See A002378 for many more comments and references.
Denominators for the sequence with o.g.f. (1-x)*log(1-x). Numerators are given by 1 - 0^n - 2(C(1,n) - C(0,n)). Also denominators for the sequence with o.g.f. (1+x)*log(1+x). This sequence has numerators (-1)^n - 0^n + 2(C(1,n) - C(0,n)).
Also the denominator of the least distance between two adjacent Farey fractions of order n. The numerator is 1. - Robert G. Wilson v, Apr 13 2014
For n>0, a(n) are the Engel expansion of A096789. - Benedict W. J. Irwin, Dec 15 2016
Number of permutations of length n>=0 avoiding the partially ordered pattern (POP) {1>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second one. - Sergey Kitaev, Dec 08 2020

Crossrefs

Cf. A000384.

Programs

  • Magma
    [0^n+Binomial(1,n)-Binomial(0,n)+2*Binomial(n,2): n in [0..60]]; // Vincenzo Librandi, Dec 18 2016
  • Mathematica
    CoefficientList[Series[(1-2x+2x^2+2x^3-x^4)/(1-x)^3,{x,0,50}],x] (* or *) Denominator/@CoefficientList[Normal[Series[(1-x)Log[1-x], {x,0,50}]], x]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

G.f.: (1-2*x+2*x^2+2*x^3-x^4) / (1-x)^3;
a(n) = 0^n + C(1, n) - C(0, n) + 2*C(n, 2).

A130820 Decimal expansion of number whose Engel expansion is given by the sequence: 1,1,2,2,3,3,4,4,...ceiling(n/2),...

Original entry on oeis.org

2, 8, 7, 0, 2, 2, 2, 1, 5, 6, 9, 7, 3, 3, 9, 6, 3, 3, 0, 8, 1, 9, 4, 5, 8, 8, 6, 5, 8, 1, 1, 1, 9, 9, 6, 0, 1, 2, 4, 0, 3, 1, 9, 2, 6, 2, 2, 8, 0, 9, 9, 5, 7, 0, 1, 2, 0, 3, 1, 2, 7, 7, 3, 6, 2, 7, 2, 8, 5, 0, 3, 8, 0, 7, 6, 8, 0, 3, 7, 5, 2, 7, 8, 4, 5, 6, 3, 9, 2, 3, 6, 1, 5, 0, 7, 1, 4, 8, 2, 4
Offset: 1

Views

Author

Stephen Casey (hexomino(AT)gmail.com), Jul 17 2007

Keywords

Examples

			2.8702221569733963308194588658111996012403192622809957012...
		

References

  • Engel, F. "Entwicklung der Zahlen nach Stammbruechen" Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.

Crossrefs

Programs

  • Maple
    evalf(BesselI(0, 2) + BesselI(1, 2) - 1, 100); # Peter Bala, Jul 02 2016
  • Mathematica
    First@ RealDigits@ N[Sum[1/Product[Ceiling[r/2], {r, n}], {n, 1000}], 100] (* Original program amended to generate output by Michael De Vlieger, Jul 03 2016 *)
    RealDigits[3 - HypergeometricPFQ[{1, 1}, {3, 3, 3}, 1]/8, 10, 100][[1]] (* Vaclav Kotesovec, Jul 03 2016 *)

Formula

From Peter Bala, Jul 01 2016: (Start)
Constant c = 1/1 + 1/(1*1) + 1/(1*1*2) + 1/(1*1*2*2) + 1/(1*1*2*2*3) + 1/(1*1*2*2*3*3) + ... = Sum_{n >= 1} binomial(n,floor(n/2))/n!.
Alternative series representations:
c = 3 - Sum_{n >= 2} 1/(n*(n - 1)*n!^2);
c = 1 + Sum_{n >= 1} (n + 2)/(n!*(n + 1)!);
c = 5/3 + 1/3*Sum_{n >= 2} (n + 1)*(n + 2)/n!^2;
c = A070910 + A096789 - 1.
Continued fraction: c = 3 - 1/(8 - 4/(14 - 9/(32 - ... - (n-1)^2/(n^2 + n + 2 - ...)))). See comments in A141827. (End)

A222391 Decimal expansion of e^2/sqrt(Pi).

Original entry on oeis.org

4, 1, 6, 8, 8, 2, 8, 4, 8, 3, 2, 6, 6, 6, 9, 2, 2, 3, 0, 4, 2, 1, 3, 0, 3, 9, 0, 7, 7, 5, 2, 3, 1, 0, 2, 6, 0, 3, 8, 6, 6, 6, 4, 6, 8, 1, 1, 4, 8, 4, 9, 9, 6, 3, 7, 8, 3, 0, 0, 0, 8, 9, 5, 4, 6, 2, 4, 0, 4, 3, 2, 2, 7, 2, 0, 1, 5, 3, 6, 0, 9, 2, 7, 9, 8, 1, 9
Offset: 1

Views

Author

Bruno Berselli, Mar 19 2013

Keywords

Examples

			4.1688284832666922304213039077523102603866646811484996378300089546240432...
		

Crossrefs

Cf. A096789: Sum_{n >= 1} 1/(Gamma(n)*Gamma(n+1)).
Cf. A035009 (see fourth comment).

Programs

  • Maple
    Digits:=100: evalf(exp(1)^2/sqrt(Pi)); # Wesley Ivan Hurt, Jan 09 2017
  • Mathematica
    RealDigits[E^2/Sqrt[Pi], 10, 90][[1]]
  • PARI
    (exp(1))^2/sqrt(Pi) \\ G. C. Greubel, Jan 09 2017

Formula

Equals decimal expansion of Sum_{n >= 1} 1/(Gamma(n/2)*Gamma((n+1)/2)).

A338697 a(n) = [x^n] Product_{k>=1} 1 / (1 - n^(k-1)*x^k).

Original entry on oeis.org

1, 1, 3, 13, 101, 931, 12391, 178809, 3331721, 66288142, 1589753211, 40104031166, 1183380156013, 36187564837217, 1262524447510383, 45533370885563716, 1834219414937219601, 76016894083755947753, 3479900167920331954531, 162982921698852088968886, 8341707623665223127224821
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n^(k - 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Join[{1}, Table[Sum[Length[IntegerPartitions[n, {k}]] n^(n - k), {k, 0, n}], {n, 1, 20}]]
    Join[{1}, Table[SeriesCoefficient[x + (n-1)/(n*QPochhammer[1/n, n*x]), {x, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 09 2021 *)

Formula

a(n) = Sum_{k=0..n} p(n,k) * n^(n-k), where p(n,k) is the number of partitions of n into k parts.
a(n) ~ c * n^(n-1), where c = BesselI(1,2) = A096789 = 1.590636854637329... - Vaclav Kotesovec, May 09 2021

A247844 Decimal expansion of the value of the continued fraction [1; 1, 2, 3, 4, 5, ...].

Original entry on oeis.org

1, 6, 9, 7, 7, 7, 4, 6, 5, 7, 9, 6, 4, 0, 0, 7, 9, 8, 2, 0, 0, 6, 7, 9, 0, 5, 9, 2, 5, 5, 1, 7, 5, 2, 5, 9, 9, 4, 8, 6, 6, 5, 8, 2, 6, 2, 9, 9, 8, 0, 2, 1, 2, 3, 2, 3, 6, 8, 6, 3, 0, 0, 8, 2, 8, 1, 6, 5, 3, 0, 8, 5, 2, 7, 6, 4, 6, 4, 1, 1, 1, 2, 9, 9, 6, 9, 6, 5, 6, 5, 4, 1, 8, 2, 6, 7, 6, 5, 6, 8, 7, 2, 3, 9, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Comments

Equals 1+A052119.

Examples

			1.697774657964007982006790592551752599486658262998...
		

Crossrefs

Programs

  • Mathematica
    FromContinuedFraction[Join[{1}, Range[50]]] // RealDigits[#, 10, 105]& // First
    (* or *) 1+BesselI[1, 2]/BesselI[0, 2] // RealDigits[#, 10, 105]& // First
  • PARI
    1+besseli(1,2)/besseli(0,2) \\ Charles R Greathouse IV, Oct 23 2023

Formula

1 + I_1(2) / I_0(2), where I_n(x) gives the modified Bessel function of the first kind.

A261879 Decimal expansion of BesselI(3,2).

Original entry on oeis.org

2, 1, 2, 7, 3, 9, 9, 5, 9, 2, 3, 9, 8, 5, 2, 6, 5, 5, 2, 7, 2, 3, 5, 4, 3, 9, 3, 3, 7, 5, 9, 3, 2, 0, 3, 7, 2, 9, 1, 7, 5, 2, 2, 7, 2, 9, 1, 5, 6, 9, 1, 8, 3, 3, 2, 5, 5, 1, 8, 4, 4, 5, 0, 4, 9, 7, 0, 2, 4, 4, 2, 6, 1, 4, 0, 7, 3, 0, 8, 6, 9, 8, 8, 9, 3, 3, 2, 2, 6, 5, 6, 6, 9, 7, 1, 4, 9, 7, 7, 7, 4, 4, 0, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Nov 19 2015

Keywords

Examples

			0.212739959239852655272354393375932037291752272915691833255184450497...
		

Crossrefs

Cf. A070910 (BesselI(0,2)), A096789 (BesselI(1,2)), A229020 (BesselI(2,2)).

Programs

  • Mathematica
    RealDigits[BesselI[3, 2], 10, 105][[1]]
  • PARI
    besseli(3,2) \\ Altug Alkan, Nov 19 2015

Formula

Sum_{k>=1} 1/((k - 2)!*(k + 1)!).
Also S(2) - S(1), using Peter Bala's notation in A229020.

A348607 Decimal expansion of BesselJ(1,2).

Original entry on oeis.org

5, 7, 6, 7, 2, 4, 8, 0, 7, 7, 5, 6, 8, 7, 3, 3, 8, 7, 2, 0, 2, 4, 4, 8, 2, 4, 2, 2, 6, 9, 1, 3, 7, 0, 8, 6, 9, 2, 0, 3, 0, 2, 6, 8, 9, 7, 1, 9, 6, 7, 5, 4, 4, 0, 1, 2, 1, 1, 3, 9, 0, 2, 0, 7, 6, 4, 0, 8, 7, 1, 1, 6, 2, 8, 9, 6, 1, 2, 1, 8, 4, 9, 4, 8, 3, 9, 9
Offset: 0

Views

Author

Dumitru Damian, Oct 25 2021

Keywords

Examples

			0.5767248077568733872...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A091681 (J(0,2)), A334383 (J(0,sqrt(2))), this sequence (J(1,2)), A197036 (I(0,1)), A070910 (I(0,2)), A334381 (I(0,sqrt(2))), A096789 (I(1,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[1, 2], 10, 100][[1]] (* Amiram Eldar, Oct 25 2021 *)
  • PARI
    besselj(1, 2) \\ Michel Marcus, Oct 25 2021
  • Sage
    bessel_J(1, 2).n(digits=100)
    

Formula

Equals Sum_{k>=0} (-1)^k/(k!*(k+1)!).
Previous Showing 11-20 of 26 results. Next