cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 71 results. Next

A159066 A102370(n) modulo 7 .

Original entry on oeis.org

0, 3, 6, 5, 4, 1, 3, 2, 1, 4, 0, 6, 0, 2, 4, 3, 2, 5, 1, 0, 6, 3, 5, 4, 3, 6, 2, 5, 2, 4, 6, 5, 4, 0, 3, 2, 1, 5, 0, 6, 5, 1, 4, 3, 4, 6, 1, 0, 6, 2, 5, 4, 3, 0, 2, 1, 0, 3, 0, 2, 6, 1, 3, 2, 1, 4, 0, 6, 5, 2, 4, 3, 2, 5, 1, 0, 1, 3, 5, 4, 3, 6, 2, 1, 0, 4, 6, 5, 4, 0, 3, 6, 3, 5, 0, 6, 5, 1, 4, 3, 2, 6, 1, 0, 6
Offset: 0

Views

Author

Philippe Deléham, Apr 04 2009

Keywords

A159067 A102370(n) modulo 9 .

Original entry on oeis.org

0, 3, 6, 5, 4, 6, 1, 0, 8, 2, 5, 4, 1, 5, 0, 8, 7, 1, 4, 3, 2, 4, 8, 7, 6, 0, 3, 7, 8, 3, 7, 6, 5, 8, 2, 1, 0, 2, 6, 5, 4, 7, 1, 0, 6, 1, 5, 4, 3, 6, 0, 8, 7, 0, 4, 3, 2, 5, 0, 3, 4, 8, 3, 2, 1, 4, 7, 6, 5, 7, 2, 1, 0, 3, 6, 5, 2, 6, 1, 0, 8, 2, 5, 4, 3, 5, 0, 8, 7, 1, 4, 8, 0, 4, 8, 7, 6, 0, 3, 2, 1, 3, 7, 6, 5
Offset: 0

Views

Author

Philippe Deléham, Apr 04 2009

Keywords

A159963 Lodumo_3 of A102370 (sloping binary numbers).

Original entry on oeis.org

0, 3, 6, 2, 1, 9, 4, 12, 5, 8, 11, 7, 10, 14, 15, 17, 13, 16, 19, 18, 20, 22, 23, 25, 21, 24, 27, 28, 26, 30, 31, 33, 29, 32, 35, 34, 36, 38, 39, 41, 37, 40, 43, 42, 45, 46, 44, 49, 48, 51, 54, 47, 52, 57, 55, 60, 50, 53, 63, 66, 58, 56, 69, 59, 61, 64, 67, 72, 62, 70, 65, 73, 75
Offset: 0

Views

Author

Philippe Deléham, Apr 28 2009

Keywords

Comments

Permutation of nonnegative numbers.

Crossrefs

Formula

a(n)= lod_3(A102370(n)).

A359567 Numbers k such that A102370(k) = k + 2.

Original entry on oeis.org

1, 3, 7, 9, 11, 15, 17, 19, 23, 25, 31, 33, 35, 39, 41, 43, 47, 49, 51, 55, 57, 63, 65, 67, 71, 73, 75, 79, 81, 83, 87, 89, 95, 97, 99, 103, 105, 107, 111, 113, 115, 119, 127, 129, 131, 135, 137, 139, 143, 145, 147, 151, 153, 159, 161, 163, 167, 169, 171, 175
Offset: 1

Views

Author

Philippe Deléham, Jan 06 2023

Keywords

Crossrefs

Cf. A102370.

A000035 Period 2: repeat [0, 1]; a(n) = n mod 2; parity of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Least significant bit of n, lsb(n).
Also decimal expansion of 1/99.
Also the binary expansion of 1/3. - Robert G. Wilson v, Sep 01 2015
a(n) = A134451(n) mod 2. - Reinhard Zumkeller, Oct 27 2007 [Corrected by Jianing Song, Nov 22 2019]
Characteristic function of odd numbers: a(A005408(n)) = 1, a(A005843(n)) = 0. - Reinhard Zumkeller, Sep 29 2008
A102370(n) modulo 2. - Philippe Deléham, Apr 04 2009
Base b expansion of 1/(b^2-1) for any b >= 2 is 0.0101... (A005563 has b^2-1). - Rick L. Shepherd, Sep 27 2009
Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 2, A[i,i] := 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = (-1)^n*charpoly(A,1). - Milan Janjic, Jan 24 2010
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the principal Dirichlet character of the reduced residue system mod 2 or mod 4 or mod 8 or mod 16 ...
Associated Dirichlet L-functions are for example L(2,chi) = Sum_{n>=1} a(n)/n^2 == A111003,
or L(3,chi) = Sum_{n>=1} a(n)/n^3 = 1.05179979... = 7*A002117/8,
or L(4,chi) = Sum_{n>=1} a(n)/n^4 = 1.014678... = A092425/96. (End)
Also parity of the nonnegative integers A001477. - Omar E. Pol, Jan 17 2012
a(n) = (4/n), where (k/n) is the Kronecker symbol. See the Eric Weisstein link. - Wolfdieter Lang, May 28 2013
Also the inverse binomial transform of A131577. - Paul Curtz, Nov 16 2016 [an observation forwarded by Jean-François Alcover]
The emanation sequence for the globe category. That is take the globe category, take the corresponding polynomial comonad, consider its carrier polynomial as a generating function, and take the corresponding sequence. - David Spivak, Sep 25 2020
For n > 0, a(n) is the alternating sum of the product of n increasing and n decreasing odd factors. For example, a(4) = 1*7 - 3*5 + 5*3 - 7*1 and a(5) = 1*9 - 3*7 + 5*5 - 7*3 + 9*1. - Charlie Marion, Mar 24 2022

Examples

			G.f. = x + x^3 + x^5 + x^7 + x^9 + x^11 + x^13 + x^15 + ... - _Michael Somos_, Feb 20 2024
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Ones complement of A059841.
Cf. A053644 for most significant bit.
This is Guy Steele's sequence GS(1, 2) (see A135416).
Period k zigzag sequences: this sequence (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), A271751 (k=10), A271832 (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18).
Cf. A154955 (Mobius transform), A131577 (binomial transform).
Cf. A111003 (Dgf at s=2), A233091 (Dgf at s=3), A300707 (Dgf at s=4).
Parity of A005811.

Programs

Formula

a(n) = (1 - (-1)^n)/2.
a(n) = n mod 2.
a(n) = 1 - a(n-1).
Multiplicative with a(p^e) = p mod 2. - David W. Wilson, Aug 01 2001
G.f.: x/(1-x^2). E.g.f.: sinh(x). - Paul Barry, Mar 11 2003
a(n) = (A000051(n) - A014551(n))/2. - Mario Catalani (mario.catalani(AT)unito.it), Aug 30 2003
a(n) = ceiling((-2)^(-n-1)). - Reinhard Zumkeller, Apr 19 2005
Dirichlet g.f.: (1-1/2^s)*zeta(s). - R. J. Mathar, Mar 04 2011
a(n) = ceiling(n/2) - floor(n/2). - Arkadiusz Wesolowski, Sep 16 2012
a(n) = ceiling( cos(Pi*(n-1))/2 ). - Wesley Ivan Hurt, Jun 16 2013
a(n) = floor((n-1)/2) - floor((n-2)/2). - Mikael Aaltonen, Feb 26 2015
Dirichlet g.f.: L(chi(2),s) with chi(2) the principal Dirichlet character modulo 2. - Ralf Stephan, Mar 27 2015
a(n) = 0^^n = 0^(0^(0...)) (n times), where we take 0^0 to be 1. - Natan Arie Consigli, May 02 2015
Euler transform and inverse Moebius transform of length 2 sequence [0, 1]. - Michael Somos, Feb 20 2024

A077957 Powers of 2 alternating with zeros.

Original entry on oeis.org

1, 0, 2, 0, 4, 0, 8, 0, 16, 0, 32, 0, 64, 0, 128, 0, 256, 0, 512, 0, 1024, 0, 2048, 0, 4096, 0, 8192, 0, 16384, 0, 32768, 0, 65536, 0, 131072, 0, 262144, 0, 524288, 0, 1048576, 0, 2097152, 0, 4194304, 0, 8388608, 0, 16777216, 0, 33554432, 0, 67108864, 0, 134217728, 0, 268435456
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Normally sequences like this are not included, since with the alternating 0's deleted it is already in the database.
Inverse binomial transform of A001333. - Paul Barry, Feb 25 2003
"Sloping binary representation" of powers of 2 (A000079), slope=-1 (see A037095 and A102370). - Philippe Deléham, Jan 04 2008
0,1,0,2,0,4,0,8,0,16,... is the inverse binomial transform of A000129 (Pell numbers). - Philippe Deléham, Oct 28 2008
Number of maximal self-avoiding walks from the NW to SW corners of a 3 X n grid.
Row sums of the triangle in A204293. - Reinhard Zumkeller, Jan 14 2012
Pisano period lengths: 1, 1, 4, 1, 8, 4, 6, 1, 12, 8, 20, 4, 24, 6, 8, 1, 16, 12, 36, 8, ... . - R. J. Mathar, Aug 10 2012
This sequence occurs in the length L(n) = sqrt(2)^n of Lévy's C-curve at the n-th iteration step. Therefore, L(n) is the Q(sqrt(2)) integer a(n) + a(n-1)*sqrt(2), with a(-1) = 0. For a variant of this C-curve see A251732 and A251733. - Wolfdieter Lang, Dec 08 2014
a(n) counts walks (closed) on the graph G(1-vertex,2-loop,2-loop). Equivalently the middle entry (2,2) of A^n where the adjacency matrix of digraph is A=(0,1,0;1,0,1;0,1,0). - David Neil McGrath, Dec 19 2014
a(n-2) is the number of compositions of n into even parts. For example, there are 4 compositions of 6 into even parts: (6), (222), (42), and (24). - David Neil McGrath, Dec 19 2014
Also the number of alternately constant compositions of n + 2, ranked by A351010. The alternately strict version gives A000213. The unordered version is A035363, ranked by A000290, strict A035457. - Gus Wiseman, Feb 19 2022
a(n) counts degree n fixed points of GF(2)[x]'s automorphisms. Proof: given a field k, k[x]'s automorphisms are determined by k's automorphisms and invertible affine maps x -> ax + b. GF(2) is rigid and has only one unit so its only nontrivial automorphism is x -> x + 1. For n = 0 we have 1 fixed point, the constant polynomial 1. (Taking the convention that 0 is not a degree 0 polynomial.) For n = 1 we have 0 fixed points as x -> x + 1 -> x are the only degree 1 polynomials. Note that if f(x) is a fixed point, then f(x) + 1 is also a fixed point. Given f(x) a degree n fixed point, we can assume WLOG x | f(x). Applying the automorphism, we then have x + 1 | f(x). Now note that f(x) / (x^2 + x) must be a fixed point, so any fixed point of degree n must either be of the form g(x) * (x^2 + x) or g(x) * (x^2 + x) + 1 for a unique degree n - 2 fixed point g(x). Therefore we have the recurrence relation a(n) = 2 * a(n - 2) as desired. - Keith J. Bauer, Mar 19 2024

Crossrefs

Column k=3 of A219946. - Alois P. Heinz, Dec 01 2012
Cf. A016116 (powers repeated).

Programs

  • GAP
    Flat(List([0..30],n->[2^n,0])); # Muniru A Asiru, Aug 05 2018
  • Haskell
    a077957 = sum . a204293_row  -- Reinhard Zumkeller, Jan 14 2012
    
  • Magma
    &cat [[2^n,0]: n in [0..20]]; // Vincenzo Librandi, Apr 03 2018
    
  • Maple
    seq(op([2^n,0]),n=0..100); # Robert Israel, Dec 23 2014
  • Mathematica
    a077957[n_] := Riffle[Table[2^i, {i, 0, n - 1}], Table[0, {n}]]; a077957[29] (* Michael De Vlieger, Dec 22 2014 *)
    CoefficientList[Series[1/(1 - 2*x^2), {x,0,50}], x] (* G. C. Greubel, Apr 12 2017 *)
    LinearRecurrence[{0, 2}, {1, 0}, 54] (* Robert G. Wilson v, Jul 23 2018 *)
    Riffle[2^Range[0,30],0,{2,-1,2}] (* Harvey P. Dale, Jan 06 2022 *)
  • PARI
    a(n)=if(n<0||n%2, 0, 2^(n/2))
    
  • Sage
    def A077957():
        x, y = -1, 1
        while True:
            yield -x
            x, y = x + y, x - y
    a = A077957(); [next(a) for i in range(40)]  # Peter Luschny, Jul 11 2013
    

Formula

G.f.: 1/(1-2*x^2).
E.g.f.: cosh(x*sqrt(2)).
a(n) = (1 - n mod 2) * 2^floor(n/2).
a(n) = sqrt(2)^n*(1+(-1)^n)/2. - Paul Barry, May 13 2003
a(n) = 2*a(n-2) with a(0)=1, a(1)=0. - Jim Singh, Jul 12 2018

A062289 Numbers n such that n-th row in Pascal triangle contains an even number, i.e., A048967(n) > 0.

Original entry on oeis.org

2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001

Keywords

Comments

Numbers n such that binary representation contains the bit string "10". Union of A043569 and A101082. - Rick L. Shepherd, Nov 29 2004
The asymptotic density of this sequence is 1 (Burns, 2016). - Amiram Eldar, Jan 26 2021

Crossrefs

Complement of A000225, so these might be called non-Mersenne numbers.
A132782 is a subsequence.

Programs

  • Haskell
    a062289 n = a062289_list !! (n-1)
    a062289_list = 2 : g 2 where
       g n = nM n : g (n+1)
       nM k = maximum $ map (\i -> i + min i (a062289 $ k-i+1)) [2..k]
       -- Cf. link [Oliver Kullmann, Xishun Zhao], Def. 3.1, page 3.
    -- Reinhard Zumkeller, Feb 21 2012, Dec 31 2010
    
  • Mathematica
    ok[n_] := MatchQ[ IntegerDigits[n, 2], {_, 1, 0, _}]; Select[ Range[100], ok] (* Jean-François Alcover, Dec 12 2011, after Rick L. Shepherd *)
  • PARI
    isok(m) = #select(x->((x%2)==0), vector(m+1, k, binomial(m, k-1))); \\ Michel Marcus, Jan 26 2021
    
  • Python
    def A062289(n): return n+(m:=n.bit_length())-(not n>=(1<Chai Wah Wu, Jun 30 2024

Formula

a(n) = A057716(n+1) - 1.
a(n) = 2 if n=1, otherwise max{min{2*i, a(n-i+1) + i}: 1 < i <= n}.
A036987(a(n)) = 0. - Reinhard Zumkeller, Mar 06 2012
A007461(a(n)) mod 2 = 0. - Reinhard Zumkeller, Apr 02 2012
A102370(n) = A105027(a(n)). - Reinhard Zumkeller, Jul 21 2012
A261461(a(n)) = A261922(a(n)). - Reinhard Zumkeller, Sep 17 2015

Extensions

More terms from Rick L. Shepherd, Nov 29 2004

A105027 Write numbers in binary under each other; to get the next block of 2^k (k >= 0) terms of the sequence, start at 2^k, read diagonals in upward direction and convert to decimal.

Original entry on oeis.org

0, 1, 3, 2, 6, 5, 4, 7, 15, 10, 9, 8, 11, 14, 13, 12, 28, 23, 18, 17, 16, 19, 22, 21, 20, 31, 26, 25, 24, 27, 30, 29, 61, 44, 39, 34, 33, 32, 35, 38, 37, 36, 47, 42, 41, 40, 43, 46, 45, 60, 55, 50, 49, 48, 51, 54, 53, 52, 63, 58, 57, 56, 59, 62, 126, 93, 76, 71, 66, 65, 64, 67, 70
Offset: 0

Views

Author

N. J. A. Sloane, Apr 03 2005

Keywords

Comments

This is a permutation of the nonnegative integers.
Structure: blocks of size 2^k - 1 taken from A102370, interspersed with terms of A102371. - Philippe Deléham, Nov 17 2007
a(A062289(n)) = A102370(n) for n > 0; a(A000225(n)) = A102371(n); a(A214433(n)) = A105025(a(n)). - Reinhard Zumkeller, Jul 21 2012

Examples

			        0
        1
       10
       11
   -> 100  Starting here, the upward diagonals
      101  read 110, 101, 100, 111, giving the block 6, 5, 4, 7.
      110
      111
     1000
     1001
     1010
     1011
      ...
		

Crossrefs

Cf. A214414 (fixed points), A214417 (inverse).

Programs

  • Haskell
    import Data.Bits ((.|.), (.&.))
    a105027 n = foldl (.|.) 0 $ zipWith (.&.)
                      a000079_list $ enumFromTo (n + 1 - a070939 n) n
    -- Reinhard Zumkeller, Jul 21 2012
    
  • Mathematica
    block[k_] := Module[{t}, t = Table[PadLeft[IntegerDigits[n, 2], k+1], {n, 2^(k-1), 2^(k+1)-1}]; Table[FromDigits[Table[t[[n-m+1, m]], {m, 1, k+1}], 2], {n,2^(k-1)+1, 2^(k-1)+2^k}]]; block[0] = {0, 1}; Table[block[k], {k, 0, 6}] // Flatten (* Jean-François Alcover, Jun 30 2015 *)
  • PARI
    apply( {A105027(n,L=exponent(n+!n))=sum(k=0,L,bitand(n+k-L,2^k))}, [0..55]) \\ M. F. Hasler, Apr 18 2022

Formula

a(2^n - 1) = A102371(n) for n > 0. - Philippe Deléham, May 10 2005

Extensions

More terms from John W. Layman, Apr 07 2005

A105025 Write numbers in binary under each other; to get the next block of 2^k (k >= 0) terms of the sequence, start at 2^k, read diagonals in downward direction and convert to decimal.

Original entry on oeis.org

0, 1, 3, 2, 4, 7, 6, 5, 11, 10, 9, 12, 15, 14, 13, 8, 18, 17, 20, 23, 22, 21, 16, 27, 26, 25, 28, 31, 30, 29, 24, 19, 33, 36, 39, 38, 37, 32, 43, 42, 41, 44, 47, 46, 45, 40, 35, 50, 49, 52, 55, 54, 53, 48, 59, 58, 57, 60, 63, 62, 61, 56, 51, 34, 68, 71, 70, 69, 64, 75, 74, 73, 76
Offset: 0

Views

Author

N. J. A. Sloane, Apr 03 2005

Keywords

Comments

This is a permutation of the nonnegative integers.
a(A214433(n)) = A105027(A214433(n)); a(A214489(n)) = A105029(A214489(n)). - Reinhard Zumkeller, Jul 21 2012

Examples

			........0
........1
.......10
.......11
......100 <- Starting here, the downward diagonals
......101 read 100, 111, 110, 101, giving the block 4, 7, 6, 5.
......110
......111
.....1000
.....1001
.....1010
.....1011
.........
		

Crossrefs

Cf. A105271 (fixed points), A214416 (inverse).

Programs

  • Haskell
    import Data.Bits ((.|.), (.&.))
    a105025 n = foldl (.|.) 0 $ zipWith (.&.)
                      a000079_list $ reverse $ enumFromTo n (n - 1 + a070939 n)
    -- Reinhard Zumkeller, Jul 21 2012
  • Maple
    a:=proc(i,j) if j=1 and i<=16 then 0 else convert(i+15,base,2)[7-j] fi end: seq(a(i,2)*2^4+a(i+1,3)*2^3+a(i+2,4)*2^2+a(i+3,5)*2+a(i+4,6),i=1..16); # this is a Maple program (not necessarily the simplest) only for one block of (2^4) numbers # Emeric Deutsch, Apr 16 2005
  • Mathematica
    numberOfBlocks = 7; bloc[n_] := Join[ Table[ IntegerDigits[k, 2], {k, 2^(n-1), 2^n-1}], Table[ Rest @ IntegerDigits[k, 2], {k, 2^n, 2^n+n}]]; Join[{0, 1}, Flatten[ Table[ Table[ Diagonal[bloc[n], k] // FromDigits[#, 2]&, {k, 0, -2^(n-1)+1, -1}], {n, 2, numberOfBlocks}]]] (* Jean-François Alcover, Nov 03 2016 *)

Extensions

More terms from Emeric Deutsch, Apr 16 2005

A109681 "Sloping ternary numbers": write numbers in ternary under each other (right-justified), read diagonals in upward direction, convert to decimal.

Original entry on oeis.org

0, 1, 5, 3, 4, 8, 6, 16, 11, 9, 10, 14, 12, 13, 17, 15, 25, 20, 18, 19, 23, 21, 22, 26, 51, 34, 29, 27, 28, 32, 30, 31, 35, 33, 43, 38, 36, 37, 41, 39, 40, 44, 42, 52, 47, 45, 46, 50, 48, 49, 53, 78, 61, 56, 54, 55, 59, 57, 58, 62, 60, 70, 65, 63, 64, 68, 66
Offset: 0

Views

Author

Philippe Deléham, Aug 08 2005

Keywords

Comments

All terms are distinct, but certain terms (see A109682) are missing.
For the terms 3^k-1 (all 2's in ternary), the diagonal is not started at the leading 2, but at the leading 1 of the following term. - Georg Fischer, Mar 13 2020

Examples

			number diagonal decimal
    0      0     0
    1      1     1
    2     12     5
   10     10     3
   11     11     4
   12     22     8
   20     20     6
   21    121    16
   22    102    11
  100    100     9
  101    101    10
  102    112    14
  110    110    12
  11.    ...   ...
  1.
  .
		

Crossrefs

Cf. A109682 (complement), A109683 (ternary version), A109684.
Cf. A102370 (base 2), A325644 (base 4), A325645 (base 5), A325692 (base 6), A325693 (base 7), A325805 (base 8), A325829 (base 9), A103205 (base 10).
Cf. A030341.

Programs

  • Haskell
    a109681 n = a109681_list !! n
    a109681_list = map (foldr (\d v -> 3 * v + d) 0) $ f a030341_tabf where
       f vss = (g 0 vss) : f (tail vss)
       g k (ws:wss) = if k < length ws then ws !! k : g (k + 1) wss else []
    -- Reinhard Zumkeller, Nov 19 2013
    
  • Maple
    t:= (n, i)-> (d-> `if`(i=0, d, t(m, i-1)))(irem(n, 3, 'm')):
    b:= (n, i)-> `if`(3^i>n, 0, t(n,i) +3*b(n+1, i+1)):
    a:= n-> b(n, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 13 2020
  • Perl
    Cf. link.

Extensions

Conjectured g.f. and recurrence removed by Georg Fischer, Mar 13 2020
Previous Showing 31-40 of 71 results. Next