cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A365381 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} with a subset summing to k.

Original entry on oeis.org

1, 2, 1, 4, 2, 2, 1, 8, 4, 4, 5, 2, 2, 1, 16, 8, 8, 10, 10, 7, 5, 5, 2, 2, 1, 32, 16, 16, 20, 20, 23, 15, 15, 12, 12, 8, 5, 5, 2, 2, 1, 64, 32, 32, 40, 40, 46, 47, 38, 33, 35, 29, 28, 21, 17, 14, 13, 8, 5, 5, 2, 2, 1, 128, 64, 64, 80, 80, 92, 94, 102, 79, 82, 76, 75, 68, 64, 53, 48, 43, 34, 33, 23, 19, 15, 13, 8, 5, 5, 2, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2023

Keywords

Comments

Row lengths are A000124(n) = 1 + n*(n+1)/2.

Examples

			Triangle begins:
   1
   2  1
   4  2  2  1
   8  4  4  5  2  2  1
  16  8  8 10 10  7  5  5  2  2  1
  32 16 16 20 20 23 15 15 12 12  8  5  5  2  2  1
  64 32 32 40 40 46 47 38 33 35 29 28 21 17 14 13  8  5  5  2  2  1
Array begins:
     k=0   k=1  k=2  k=3  k=4  k=5  k=6  k=7  k=8  k=9
-------------------------------------------------------
n=0:  1
n=1:  2     1
n=2:  4     2    2    1
n=3:  8     4    4    5    2    2    1
n=4:  16    8    8    10   10   7    5    5    2    2
n=5:  32    16   16   20   20   23   15   15   12   12
n=6:  64    32   32   40   40   46   47   38   33   35
n=7:  128   64   64   80   80   92   94   102  79   82
n=8:  256   128  128  160  160  184  188  204  207  184
n=9:  512   256  256  320  320  368  376  408  414  440
The T(5,8) = 12 subsets are:
  {3,5}  {1,2,5}  {1,2,3,4}  {1,2,3,4,5}
         {1,3,4}  {1,2,3,5}
         {1,3,5}  {1,2,4,5}
         {2,3,5}  {1,3,4,5}
         {3,4,5}  {2,3,4,5}
		

Crossrefs

Row lengths are A000124 = number of distinct sums of subsets of {1..n}.
Central column/main diagonal is A365376.
A000009 counts sets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],k]&]],{n,0,8},{k,0,n*(n+1)/2}]

A050291 Number of double-free subsets of {1, 2, ..., n}.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 288, 576, 960, 1920, 2880, 5760, 9360, 18720, 28080, 56160, 93600, 187200, 280800, 561600, 898560, 1797120, 2695680, 5391360, 8985600, 17971200, 26956800, 53913600, 87091200, 174182400, 261273600, 522547200, 870912000
Offset: 0

Views

Author

Keywords

Comments

A set is double-free if it does not contain both x and 2x.
So these are equally "half-free" subsets. - Gus Wiseman, Jul 08 2019

Examples

			From _Gus Wiseman_, Jul 08 2019: (Start)
The a(0) = 1 through a(5) = 20 double-free subsets:
  {}  {}   {}   {}     {}       {}
      {1}  {1}  {1}    {1}      {1}
           {2}  {2}    {2}      {2}
                {3}    {3}      {3}
                {1,3}  {4}      {4}
                {2,3}  {1,3}    {5}
                       {1,4}    {1,3}
                       {2,3}    {1,4}
                       {3,4}    {1,5}
                       {1,3,4}  {2,3}
                                {2,5}
                                {3,4}
                                {3,5}
                                {4,5}
                                {1,3,4}
                                {1,3,5}
                                {1,4,5}
                                {2,3,5}
                                {3,4,5}
                                {1,3,4,5}
(End)
		

References

  • Wang, E. T. H. ``On Double-Free Sets of Integers.'' Ars Combin. 28, 97-100, 1989.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (F-> (p-> a(n-1)*F(p+3)
          /F(p+2))(padic[ordp](n, 2)))(j-> (<<0|1>, <1|1>>^j)[1, 2]))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 16 2019
  • Mathematica
    a[n_] := a[n] = (b = IntegerExponent[2n, 2]; a[n-1]*Fibonacci[b+2]/Fibonacci[b+1]); a[1]=2; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Oct 10 2012, from first formula *)
    Table[Length[Select[Subsets[Range[n]],Intersection[#,#/2]=={}&]],{n,0,10}] (* Gus Wiseman, Jul 08 2019 *)
  • PARI
    first(n)=my(v=vector(n)); v[1]=2; for(k=2,n, v[k]=v[k-1]*fibonacci(valuation(k,2)+3)/fibonacci(valuation(k,2)+2)); v \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = a(n-1)*Fibonacci(b(2n)+2)/Fibonacci(b(2n)+1), Fibonacci = A000045, b = A007814.
a(n) = 2^n - A088808(n). - Reinhard Zumkeller, Oct 19 2003

Extensions

Extended with formula by Christian G. Bower, Sep 15 1999
a(0)=1 prepended by Alois P. Heinz, Jan 16 2019

A367216 Number of subsets of {1..n} whose cardinality is equal to the sum of some subset.

Original entry on oeis.org

1, 2, 3, 5, 10, 20, 40, 82, 169, 348, 716, 1471, 3016, 6171, 12605, 25710, 52370, 106539, 216470, 439310, 890550, 1803415, 3648557, 7375141, 14896184, 30065129, 60639954, 122231740, 246239551, 495790161, 997747182, 2006969629, 4035274292, 8110185100, 16293958314, 32724456982
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(0) = 1 through a(4) = 10 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {2,3}    {2,3}
                  {1,2,3}  {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A237668 counts sum-full partitions, ranks A364532.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

Formula

a(n) = 2^n - A367217(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367217 Number of subsets of {1..n} whose cardinality is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 24, 46, 87, 164, 308, 577, 1080, 2021, 3779, 7058, 13166, 24533, 45674, 84978, 158026, 293737, 545747, 1013467, 1881032, 3489303, 6468910, 11985988, 22195905, 41080751, 75994642, 140514019, 259693004, 479749492, 885910870, 1635281386
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 12 subsets:
  {2}  {2}    {2}    {2}
       {3}    {3}    {3}
       {1,3}  {4}    {4}
              {1,3}  {5}
              {1,4}  {1,3}
              {3,4}  {1,4}
                     {1,5}
                     {3,4}
                     {3,5}
                     {4,5}
                     {1,4,5}
                     {2,4,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A229816 counts partitions whose length is not a part, complement A002865.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A237667 counts sum-free partitions, ranks A364531.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,15}]

Formula

a(n) = 2^n - A367216(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367221 Number of strict integer partitions of n whose length (number of parts) cannot be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 23, 24, 29, 32, 37, 41, 49, 54, 63, 72, 82, 93, 108, 122, 139, 159, 180, 204, 231, 261, 293, 331, 370, 415, 464, 518, 575, 641, 710, 789, 871, 965, 1064, 1177, 1294, 1428, 1569, 1729, 1897
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367219.

Examples

			The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16):
  2  3  4  5  6  7   8   9   A   B    C    D    E    F    G
                 43  53  54  64  65   75   76   86   87   97
                         63  73  74   84   85   95   96   A6
                                 83   93   94   A4   A5   B5
                                 542  642  A3   B3   B4   C4
                                           652  752  C3   D3
                                           742  842  654  754
                                                     762  862
                                                     852  952
                                                     942  A42
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365541 counts subsets containing two distinct elements summing to k.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n,0,30}]

A367222 Number of subsets of {1..n} whose cardinality can be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

1, 2, 3, 6, 12, 24, 49, 101, 207, 422, 859, 1747, 3548, 7194, 14565, 29452, 59496, 120086, 242185, 488035, 982672, 1977166, 3975508, 7989147, 16047464, 32221270, 64674453, 129775774, 260337978, 522124197, 1046911594, 2098709858, 4206361369, 8429033614, 16887728757, 33829251009, 67755866536, 135687781793, 271693909435
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			The set {1,2,4} has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(4).
The a(0) = 1 through a(4) = 12 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {1,3}    {1,3}
                  {2,3}    {1,4}
                  {1,2,3}  {2,3}
                           {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A326020 counts complete subsets.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts subsets containing two distinct elements summing to k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#], Union[#]]!={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367222(n):
        c, mlist = 1, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        c += 1
                        break
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367223(n).

Extensions

a(13)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025

A367223 Number of subsets of {1..n} whose cardinality cannot be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 15, 27, 49, 90, 165, 301, 548, 998, 1819, 3316, 6040, 10986, 19959, 36253, 65904, 119986, 218796, 399461, 729752, 1333162, 2434411, 4441954, 8097478, 14746715, 26830230, 48773790, 88605927, 160900978, 292140427, 530487359, 963610200, 1751171679, 3183997509
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			3 cannot be written as a nonnegative linear combination of 2, 4, and 5, so {2,4,5} is counted under a(6).
The a(2) = 1 through a(6) = 15 subsets:
  {2}  {2}  {2}    {2}      {2}
       {3}  {3}    {3}      {3}
            {4}    {4}      {4}
            {3,4}  {5}      {5}
                   {3,4}    {6}
                   {3,5}    {3,4}
                   {4,5}    {3,5}
                   {2,4,5}  {3,6}
                            {4,5}
                            {4,6}
                            {5,6}
                            {2,4,5}
                            {2,4,6}
                            {2,5,6}
                            {4,5,6}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A116861 counts positive linear combinations of strict partitions of k.
A364916 counts linear combinations of strict partitions of k.
A366320 counts subsets without a subset summing to k, with A365381.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#],Union[#]]=={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367223(n):
        c, mlist = 0, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367222(n).

Extensions

a(14)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025

A326076 Number of subsets of {1..n} containing all of their integer products <= n.

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 44, 88, 152, 232, 444, 888, 1576, 3152, 6136, 11480, 17112, 34224, 63504, 127008, 232352, 442208, 876944, 1753888, 3138848, 4895328, 9739152, 18141840, 34044720, 68089440, 123846624, 247693248, 469397440, 924014144, 1845676384, 3469128224, 5182711584
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2019

Keywords

Comments

The strict case is A326081.

Examples

			The a(0) = 1 through a(4) = 12 sets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {2}    {2}      {3}
           {1,2}  {3}      {4}
                  {1,2}    {1,3}
                  {1,3}    {1,4}
                  {2,3}    {2,4}
                  {1,2,3}  {3,4}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
The a(6) = 44 sets:
  {}  {1}  {1,3}  {1,2,4}  {1,2,4,5}  {1,2,3,4,6}  {1,2,3,4,5,6}
      {3}  {1,4}  {1,3,4}  {1,2,4,6}  {1,2,4,5,6}
      {4}  {1,5}  {1,3,5}  {1,3,4,5}  {1,3,4,5,6}
      {5}  {1,6}  {1,3,6}  {1,3,4,6}  {2,3,4,5,6}
      {6}  {2,4}  {1,4,5}  {1,3,5,6}
           {3,4}  {1,4,6}  {1,4,5,6}
           {3,5}  {1,5,6}  {2,3,4,6}
           {3,6}  {2,4,5}  {2,4,5,6}
           {4,5}  {2,4,6}  {3,4,5,6}
           {4,6}  {3,4,5}
           {5,6}  {3,4,6}
                  {3,5,6}
                  {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Times@@@Tuples[#,2],#<=n&]]&]],{n,0,10}]
  • PARI
    a(n)={
        my(lim=vector(n, k, sqrtint(k)));
        my(accept(b, k)=for(i=2, lim[k], if(k%i ==0 && bittest(b, i) && bittest(b, k/i), return(0))); 1);
        my(recurse(k, b)=
          my(m=1);
          for(j=max(2*k, n\2+1), min(2*k+1, n), if(accept(b, j), m*=2));
          k++;
          m*if(k > n\2, 1, self()(k, b + (1<Andrew Howroyd, Aug 30 2019

Formula

a(n) = 2*A326114(n) for n > 0. - Andrew Howroyd, Aug 30 2019

Extensions

a(16)-a(30) from Andrew Howroyd, Aug 16 2019
Terms a(31) and beyond from Andrew Howroyd, Aug 30 2019

A326117 Number of subsets of {1..n} containing no products of two or more distinct elements.

Original entry on oeis.org

1, 2, 3, 5, 9, 17, 29, 57, 101, 201, 365, 729, 1233, 2465, 4593, 8297, 15921, 31841, 55953, 111905, 195713, 362337, 697361, 1394721, 2334113, 4668225, 9095393, 17225313, 31242785, 62485569, 106668609, 213337217, 392606529, 755131841, 1491146913, 2727555425, 4947175713
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

If this sequence counts product-free sets, A326081 counts product-closed sets.

Examples

			The a(6) = 28 sets:
  {}  {1}  {2,3}  {2,3,4}  {2,3,4,5}
      {2}  {2,4}  {2,3,5}  {2,4,5,6}
      {3}  {2,5}  {2,4,5}  {3,4,5,6}
      {4}  {2,6}  {2,4,6}
      {5}  {3,4}  {2,5,6}
      {6}  {3,5}  {3,4,5}
           {3,6}  {3,4,6}
           {4,5}  {3,5,6}
           {4,6}  {4,5,6}
           {5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Select[Times@@@Subsets[#,{2}],#<=n&]]=={}&]],{n,0,20}]

Formula

For n > 0, a(n) = A326116(n) + 1.

Extensions

Terms a(21)-a(36) from Andrew Howroyd, Aug 30 2019

A365376 Number of subsets of {1..n} with a subset summing to n.

Original entry on oeis.org

1, 1, 2, 5, 10, 23, 47, 102, 207, 440, 890, 1847, 3730, 7648, 15400, 31332, 62922, 127234, 255374, 514269, 1030809, 2071344, 4148707, 8321937, 16660755, 33384685, 66812942, 133789638, 267685113, 535784667, 1071878216, 2144762139, 4290261840, 8583175092, 17168208940, 34342860713
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2023

Keywords

Examples

			The a(1) = 1 through a(4) = 10 sets:
  {1}  {2}    {3}      {4}
       {1,2}  {1,2}    {1,3}
              {1,3}    {1,4}
              {2,3}    {2,4}
              {1,2,3}  {3,4}
                       {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case containing n is counted by A131577.
The version with re-usable parts is A365073.
The complement is counted by A365377.
The complement w/ re-usable parts is A365380.
Main diagonal of A365381.
A000009 counts sets summing to n, multisets A000041.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],n]&]],{n,0,10}]
  • PARI
    isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(1)));
    a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ Michel Marcus, Sep 09 2023
    
  • Python
    from itertools import combinations, chain
    from sympy.utilities.iterables import partitions
    def A365376(n):
        if n == 0: return 1
        nset = set(range(1,n+1))
        s, c = [set(p) for p in partitions(n,m=n,k=n) if max(p.values(),default=1) == 1], 1
        for a in chain.from_iterable(combinations(nset,m) for m in range(2,n+1)):
            if sum(a) >= n:
                aset = set(a)
                for p in s:
                    if p.issubset(aset):
                        c += 1
                        break
        return c # Chai Wah Wu, Sep 09 2023

Formula

a(n) = 2^n-A365377(n). - Chai Wah Wu, Sep 09 2023

Extensions

a(16)-a(25) from Michel Marcus, Sep 09 2023
a(26)-a(32) from Chai Wah Wu, Sep 09 2023
a(33)-a(35) from Chai Wah Wu, Sep 10 2023
Previous Showing 11-20 of 39 results. Next