cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A298735 Number of odd squares dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2018

Keywords

Comments

The smallest integer with exactly m odd square divisors is A357450(m). - Bernard Schott, Oct 03 2022

Examples

			a(81) = 3 because 81 has 5 divisors {1, 3, 9, 27, 81} among which 3 are odd squares {1, 9, 81}.
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; Rest[CoefficientList[Series[Sum[x^(2 k - 1)^2/(1 - x^(2 k - 1)^2), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Length[Select[Divisors[n], IntegerQ[Sqrt[#]] && OddQ[#] &]]; Table[a[n], {n, 1, 105}]
    f[2, e_] := 1; f[p_, e_] := Floor[e/2] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n)=factorback(apply(e->e\2+1, factor(n/2^valuation(n,2))[, 2])) \\ Rémy Sigrist, Jan 26 2018

Formula

G.f.: Sum_{k>=1} x^((2*k-1)^2)/(1 - x^((2*k-1)^2)).
Multiplicative with a(2^e) = 1 and a(p^e) = floor(e/2) + 1 for p > 2. - Amiram Eldar, Sep 11 2020
a(n) = A046951(4*n) - A046951(n) = A046951(A000265(n)). - Velin Yanev, Antti Karttunen, Dec 06 2021
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/8 (A111003). - Amiram Eldar, Sep 25 2022

Extensions

Keyword mult added by Rémy Sigrist, Jan 26 2018

A379481 Square of prime-shifted n, or equally, n squared, then prime-shifted one step towards larger primes.

Original entry on oeis.org

1, 9, 25, 81, 49, 225, 121, 729, 625, 441, 169, 2025, 289, 1089, 1225, 6561, 361, 5625, 529, 3969, 3025, 1521, 841, 18225, 2401, 2601, 15625, 9801, 961, 11025, 1369, 59049, 4225, 3249, 5929, 50625, 1681, 4761, 7225, 35721, 1849, 27225, 2209, 13689, 30625, 7569, 2809, 164025, 14641, 21609, 9025, 23409, 3481, 140625
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2024

Keywords

Crossrefs

Cf. A000290, A003961, A016754, A048673, A111003, A337336, A378231, A379482 [= sigma(a(n))], A379484 [= A379473(a(n))].

Programs

  • Mathematica
    {1}~Join~Array[Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]] ]^2 &, 53, 2] (* Michael De Vlieger, Dec 27 2024 *)
  • PARI
    A379481(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); factorback(f); };

Formula

Fully multiplicative with a(prime(i)) = prime(i+1)^2.
a(n) = A003961(n^2) = A003961(n)^2.
a(n) = A016754(A048673(n)-1).
a(n) = (1/2)*(A378231(n)+A379482(n)).
From Amiram Eldar, Dec 28 2024: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 (A111003).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^2/72. (End)

A242822 Decimal expansion of B. Davis' constant Pi^2/(8*G), a Riesz-Kolmogorov constant, where G is Catalan's constant.

Original entry on oeis.org

1, 3, 4, 6, 8, 8, 5, 2, 5, 1, 9, 9, 9, 4, 0, 6, 5, 9, 5, 1, 8, 2, 0, 0, 7, 5, 5, 5, 4, 4, 1, 1, 0, 7, 7, 9, 4, 7, 1, 5, 2, 5, 1, 6, 2, 5, 5, 6, 8, 9, 6, 8, 8, 2, 0, 8, 1, 9, 4, 2, 6, 2, 2, 8, 1, 2, 7, 0, 0, 8, 1, 0, 7, 3, 4, 2, 9, 5, 8, 3, 5, 2, 1, 0, 8, 2, 2, 9, 6, 3, 7, 7, 5, 4, 4, 7, 9, 8, 4, 7, 5
Offset: 1

Views

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.3468852519994065951820075554411...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 7.7 Riesz-Kolmogorov Constants, p. 474.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Pi(R)^2/(8*Catalan(R)); // G. C. Greubel, Aug 25 2018
  • Maple
    s:= convert(evalf(Pi^2/(8*Catalan), 140), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    RealDigits[Pi^2/(8*Catalan), 10, 100] // First
  • PARI
    default(realprecision, 100); Pi^2/(8*Catalan) \\ G. C. Greubel, Aug 25 2018
    

Formula

(Sum_{n>=0} 1/(2*n + 1)^2) / (Sum_{n>=0} (-1)^n/(2*n + 1)^2) = A111003/A006752.
Equals Product_{k>=1} (1 + 1/A002145(k)^2)/(1 - 1/A002145(k)^2) = A243381 / A243379. - Vaclav Kotesovec, Apr 30 2020
Equals Sum_{q in A004614} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
Equals 1/A377753. - Hugo Pfoertner, Nov 22 2024

A300690 Decimal expansion of sqrt(Pi^2/8 - 1).

Original entry on oeis.org

4, 8, 3, 4, 2, 5, 8, 4, 7, 6, 0, 8, 6, 7, 9, 0, 9, 9, 0, 1, 3, 7, 3, 2, 6, 3, 7, 0, 6, 3, 9, 3, 1, 7, 0, 2, 2, 3, 2, 8, 0, 1, 7, 2, 7, 6, 6, 5, 1, 4, 5, 9, 9, 4, 8, 6, 9, 3, 4, 5, 7, 2, 4, 6, 1, 7, 4, 7, 3, 1, 3, 8, 1, 6, 4, 0, 8, 0, 1, 6, 6, 1, 5, 0, 2, 8, 7, 2, 5, 3, 3, 3, 6, 4, 5, 5, 2, 0, 4, 5, 1, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also the total harmonic distortion (THD) of a square wave, see formula (11) in the Blagouchine & Moreau link.

Examples

			0.4834258476086790990137326370639317022328017276651459...
		

Crossrefs

Programs

  • MATLAB
    format long; sqrt(pi^2/8-1)
  • Maple
    evalf(sqrt((1/8)*Pi^2-1), 120)
  • Mathematica
    RealDigits[Sqrt[Pi^2/8 - 1], 10, 120][[1]]
  • PARI
    default(realprecision, 120); sqrt(Pi^2/8-1)
    

A300710 Decimal expansion of 17*Pi^8/161280.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 5, 1, 7, 9, 0, 2, 5, 2, 9, 6, 1, 1, 9, 3, 0, 2, 9, 8, 7, 2, 4, 9, 2, 9, 5, 7, 2, 8, 0, 4, 1, 5, 6, 6, 5, 4, 2, 9, 7, 5, 0, 6, 1, 3, 7, 4, 0, 4, 3, 6, 8, 7, 1, 9, 9, 6, 1, 5, 9, 2, 3, 4, 7, 1, 3, 0, 0, 4, 1, 6, 2, 5, 3, 7, 0, 1, 8, 3, 9, 0, 5, 5, 6, 3, 9, 6, 2, 8, 7, 2, 9, 8, 9, 3, 1, 1, 2
Offset: 1

Views

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^8), whose value is obtained from zeta(8) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s)=(1-2^(-s))*zeta(s).

Examples

			1.0001551790252961193029872492957280415665429750613740...
		

Crossrefs

Programs

  • MATLAB
    format long; (17/161280)*pi^8
  • Maple
    evalf((17/161280)*Pi^8, 120);
  • Mathematica
    RealDigits[(17/161280)*Pi^8, 10, 120][[1]]
  • PARI
    default(realprecision, 120); (17/161280)*Pi^8
    

Formula

Equals 17*A092736/161280. - Omar E. Pol, Mar 11 2018
From Artur Jasinski, Jun 24 2025: (Start)
Equals DirichletL(2,1,8).
Equals DirichletL(4,1,8).
Equals DirichletL(8,1,8).
Equals DirichletL(16,1,8). (End)
Equals 255*Zeta(8)/256. - Jason Bard, Aug 21 2025

A276712 Decimal expansion of zeta(3)/8.

Original entry on oeis.org

1, 5, 0, 2, 5, 7, 1, 1, 2, 8, 9, 4, 9, 4, 9, 2, 8, 5, 6, 7, 4, 9, 6, 7, 2, 7, 0, 1, 8, 8, 9, 3, 1, 2, 4, 8, 8, 4, 5, 6, 2, 3, 2, 8, 6, 5, 4, 2, 5, 6, 2, 3, 6, 0, 2, 2, 4, 0, 3, 3, 9, 4, 4, 4, 1, 7, 7, 2, 9, 7, 7, 5, 7, 2, 3, 2, 8, 9
Offset: 0

Views

Author

Terry D. Grant, Sep 15 2016

Keywords

Examples

			0.150257112894949285674967270188...
		

References

  • James Dodson, The Mathematical Repository Containing Analytical Solutions of Five Hundred Questions: Mostly Selected from Scarce and Valuable Authors, (1748), page 375.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta();  Evaluate(L,3)/8; // G. C. Greubel, Nov 24 2021
  • Mathematica
    RealDigits[(Zeta[3])/8, 10, 100][[1]]
  • PARI
    zeta(3)/8 \\ Michel Marcus, Sep 16 2016
    
  • Sage
    (zeta(3)/8).n(100)
    

Formula

Equals Sum_{n>=1} 1/(2n)^3 = 1/8 + 1/64 + 1/216 + 1/512 + ...
Equals A002117/8.
zeta(3)/8 + A233091 = Sum_{n>=1} 1/(2n+1)^3 + Sum_{n>=1} 1/(2n)^3 = zeta(3).
Equals Sum_{k>=1} (-1)^(k+1) * H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 22 2020
Equals Integral_{x=0..Pi/4} log(sin(x))*log(cos(x))/(sin(x)*cos(x)) dx (Lord, 2005). - Amiram Eldar, Jun 23 2023
Equals -integral_{x=0..1} log(x) log(1+x)/(1+x). [Barbieri] - R. J. Mathar, Jun 07 2024

A300709 Decimal expansion of Pi^6/960.

Original entry on oeis.org

1, 0, 0, 1, 4, 4, 7, 0, 7, 6, 6, 4, 0, 9, 4, 2, 1, 2, 1, 9, 0, 6, 4, 7, 8, 5, 8, 7, 1, 3, 7, 9, 3, 7, 3, 9, 4, 6, 5, 3, 3, 5, 1, 5, 9, 1, 7, 5, 1, 0, 9, 0, 2, 2, 4, 9, 3, 8, 6, 2, 1, 0, 2, 8, 6, 2, 9, 2, 6, 4, 4, 9, 2, 5, 4, 4, 1, 1, 4, 8, 0, 5, 7, 2, 8, 3, 5, 5, 6, 3, 4, 5, 3, 3, 2, 4, 5, 5, 5, 8, 4, 9, 0
Offset: 1

Views

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^6), whose value is obtained from zeta(6) given by L. Euler in 1735: Sum_{n>=0}(2n+1)^(-s) = (1-2^(-s))*zeta(s).

Examples

			1.0014470766409421219064785871379373946533515917510902...
		

Crossrefs

Programs

  • MATLAB
    format long; pi^6/960
  • Maple
    evalf((1/960)*Pi^6, 120)
  • Mathematica
    RealDigits[Pi^6/960, 10, 120][[1]]
  • PARI
    default(realprecision, 120); Pi^6/960
    

Formula

Equals A092732/960. - Omar E. Pol, Mar 11 2018
From Artur Jasinski, Jun 24 2025: (Start)
Equals DirichletL(2,1,6).
Equals DirichletL(4,1,6).
Equals DirichletL(8,1,6).
Equals DirichletL(16,1,6). (End)

A354246 Indices of coefficients of x^(2*k-1) in Integral exp(-x*tan(x))/cos(x) dx at which the signs of the coefficients change: list of k such that sign(A354245(k)) != sign(A354245(k-1)), starting with 1.

Original entry on oeis.org

1, 2, 5, 10, 18, 29, 42, 57, 75, 95, 118, 143, 171, 201, 234, 269, 307, 347, 390, 435, 482, 532, 585, 639, 697, 757, 819, 884, 951, 1021, 1093, 1167, 1245, 1324, 1406, 1491, 1578, 1667, 1759, 1853, 1950, 2050, 2151, 2256, 2362, 2471, 2583, 2697, 2814, 2933, 3054, 3178, 3305, 3434, 3565, 3699, 3835, 3974, 4115, 4259, 4405, 4554, 4705, 4859
Offset: 1

Views

Author

Paul D. Hanna, May 20 2022

Keywords

Comments

The e.g.f. of A354245 is Integral exp(-x*tan(x))/cos(x) dx.
What is the limit of a(n)/n^2 ?
Conjecture: lim_{n->oo} a(n)/n^2 = Pi^2/8 = A111003 = 1.2337... - Vaclav Kotesovec, May 26 2022

Examples

			The expansion of Integral exp(-x*tan(x)) / cos(x) dx = x - x^3/3! - 3*x^5/5! - 5*x^7/7! + 441*x^9/9! + 25911*x^11/11! + 1384757*x^13/13! + 74436531*x^15/15! + 3175224945*x^17/17! - 135369432209*x^19/19! + ... + A354245(n)*x^(2*n-1)/(2*n-1)! + ...
The signs (+-1) of the coefficients A354245 begin:
[+, -, -, -, +, +, +, +, +, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, +, +, +, +, +, +, +, +, +, +, +, +, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, ...].
This sequence gives the positions in A354245 at which the signs of the coefficients change.
		

Crossrefs

Programs

  • Mathematica
    nmax = 500; A354245 = Table[(CoefficientList[Series[1/(E^(x*Tan[x])*Cos[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}]; Join[{1}, Select[Range[nmax], A354245[[#]]*A354245[[#-1]] < 0 &]] (* Vaclav Kotesovec, May 24 2022 *)

Extensions

a(39)-a(64) from Vaclav Kotesovec, May 26 2022

A354399 List of k such that sign(A009273(k)) = sign(A009273(k+1)).

Original entry on oeis.org

0, 1, 5, 12, 21, 33, 47, 64, 83, 105, 129, 155, 184, 216, 250, 286, 325, 366, 410, 456, 505, 556, 610, 666, 725, 786, 849, 915, 984, 1055, 1128, 1204, 1282, 1363, 1446, 1532, 1620, 1711, 1804, 1900, 1998, 2098, 2201, 2307, 2415, 2525, 2638, 2753, 2871, 2991, 3114, 3239, 3367, 3497, 3630, 3765, 3903, 4043, 4185, 4330, 4477, 4627, 4780, 4935
Offset: 1

Views

Author

Vaclav Kotesovec, May 25 2022

Keywords

Comments

Conjecture: lim_{n->oo} a(n)/n^2 = Pi^2/8 = A111003 = 1.2337...

Examples

			12 is in the sequence because A009273(12) = -454930757753597952 and A009273(13) = -94991612229069430784 have the same sign.
		

Crossrefs

Programs

  • Mathematica
    nmax = 400; A009273 = Table[(CoefficientList[Series[E^(x*Tanh[x]), {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}]; Join[{0}, Select[Range[nmax-1], A009273[[#]]*A009273[[#-1]] > 0 &] - 1]

A195056 Decimal expansion of Pi^2/7.

Original entry on oeis.org

1, 4, 0, 9, 9, 4, 3, 4, 8, 5, 8, 6, 9, 9, 0, 8, 3, 7, 4, 1, 1, 9, 2, 1, 2, 9, 9, 9, 9, 8, 2, 3, 0, 7, 3, 0, 5, 0, 4, 4, 8, 1, 4, 2, 0, 1, 0, 3, 4, 3, 9, 8, 6, 6, 0, 9, 1, 6, 1, 9, 2, 7, 6, 8, 0, 3, 1, 4, 3, 4, 9, 7, 4, 6, 3, 1, 3, 1, 5, 0, 3, 4, 7, 1, 4, 5, 3, 9, 0, 5, 7, 6, 7, 4, 0, 7, 8, 8, 9, 0, 2, 6, 0, 5, 7
Offset: 1

Views

Author

Omar E. Pol, Oct 04 2011

Keywords

Examples

			1.409943485869908374119212999982307305045...
		

References

  • F. Aubonnet, D. Guinin and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.

Crossrefs

Programs

  • Magma
    Pi(RealField(128))^2/7; // G. C. Greubel, Jun 02 2021
    
  • Mathematica
    RealDigits[Pi^2/7, 10, 105][[1]] (* T. D. Noe, Oct 05 2011 *)
  • PARI
    Pi^2/7 \\ Michel Marcus, Feb 04 2022
  • Sage
    numerical_approx(pi^2/7, digits=128) # G. C. Greubel, Jun 02 2021
    

Formula

Equals Sum_{k>=1} A000265(k)/k^3. - Amiram Eldar, Jun 27 2020
Equals Integral_{x=0..1} log(1+x+x^2+x^3+x^4+x^5+x^6)/x dx (Aubonnet). - Bernard Schott, Feb 04 2022

Extensions

Extended by T. D. Noe, Oct 05 2011
Previous Showing 21-30 of 41 results. Next